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Abstract—Refactoring is widely adopted nowadays in industry
to restructure the code and meet high quality while preserving
the external behavior. Many of the existing refactoring tools and
research are based on search-based techniques to find relevant
recommendations by finding trade-offs between different quality
attributes. While these techniques show promising results on
open-source and industry projects, they lack explanations of the
recommended changes which can impact their trustworthiness
when adopted in practice by developers. Furthermore, most of the
adopted search-based techniques are based on random population
generation and random change operators (e.g. crossover and
mutation). However, it is critical to understand which good
refactoring patterns may exist when applying change operators
to either keep them or exchange with other solutions rather
than destroying them with random changes. In this paper, we
propose an enhanced knowledge-informed multi-objective search
algorithm, called X-SBR, to provide explanations for refactoring
solutions and improve the generated recommendations. First, we
generate association rules using the Apriori algorithm to find
relationships between applied refactorings in previous commits,
their locations, and their rationale (quality improvements). Then,
we use these rules to 1) initialize the population, 2) improve the
change operators and seeding mechanisms of the multi-objective
search in order to preserve and exchange good patterns in the
refactoring solutions, and 3) explain how a sequence of refactorings
collaborate in order to improve the quality of the system (e.g.
fitness functions). The validation on large open-source systems
shows that X-SBR provides refactoring solutions of a better
quality than those given by the state-of-the-art techniques in
terms of reducing the invalid refactorings, improving the quality,
and increasing trustworthiness of the developers in the suggested
refactorings via the provided explanations.

Index Terms—Refactoring recommendations, Search-Based
Software Engineering, QMOOD metrics, multi-objective search

I. INTRODUCTION

As software systems continue to grow in size and complexity,
their maintenance continues to become more challenging and
costly [1], [2]. Several studies show that developers spend
over 60% of their time in understanding existing code of large
projects [3]. In order to improve the quality and maintainability
of software systems, refactoring is widely adopted in industry
to change the internal structure without affecting the external
behavior of software systems [4].

A wide range of work has been done on finding refactoring
recommendations using a variety of techniques including
template/rule-based tools [5], [6], static and lexical analysis, and
search-based software engineering [7]. Recent surveys show
that search-based software engineering is widely adopted to

find refactoring recommendations [7], [8] due to the conflicting
nature of many quality metrics and the large search space of
potential refactoring strategies that can be useful depending
on the context. For instance, O’Keeffe et al. [9] compared
the ability of different local search-based algorithms such as
hill climbing and simulated annealing to generate refactoring
recommendations that improve the QMOOD quality metrics
[10]. Harman et al. proposed to use multi-objective search for
refactoring to improve coupling and reduce cohesion [11]. Ouni
et al. [12] and Mkaouer et al. [13] proposed multi-objective
and many-objective techniques to balance different conflicting
quality metrics when finding refactoring recommendations. Hall
et al. [14] and Alizadeh et al. [15] improved the state-of-the-
art of search-based refactoring by enabling interaction with
the developers and learning their preferences. More detailed
descriptions of existing search-based refactoring studies can
be found in the following surveys [7], [8].

Despite the promising results of search-based refactoring
on both open-source and industry projects, several limitations
can still be addressed in order to improve their efficiency.
These limitations can apply, in general, to most of the existing
search-based software engineering studies [16]–[18] but we
focus only on search-based refactoring in this paper. First,
the random generation of the initial population can have a
significant impact on the execution time and the quality of
final solutions [19], [20]. Despite the large amount of data
of the history of commits about applied refactorings, existing
search-based refactoring studies are still generating the initial
population of solutions randomly without exploiting the prior
knowledge of what could construct a good refactoring solution.
Second, most of software engineering problems, including
refactoring, are discrete. However, the majority of existing
studies are using regular change operators such as the random
one-point crossover that is more adequate for continuous
problems [21]. In fact, a random application of change operators
without understanding the good/bad patterns in a refactoring
sequence of the solution can simply destroy them, deteriorate
the quality, and delay the convergence towards good solutions.
Third, current search-based refactoring techniques generate
a large sequence of refactorings as one solution without
explaining to developers how the different operations in the
solution are depending to each other in terms of fixing specific
quality issues or improving the fitness functions which can
impact their trustworthiness by developers in practice. Finally,



the recommendation of refactorings is highly dependent to
the developers interest and preferences such as files owned
or targeted quality goals. Thus, refactoring recommendations
should be customized to the needs of the developers after
understanding and learning their behavior and preferences.

In this paper, we propose an approach for refactoring
recommendations based on a novel knowledge-informed multi-
objective optimization algorithm to guide the generation of
the initial population, define intelligent genetic operators and
explain the generated refactoring solutions (also called the
Pareto front). The proposed approach is a combination of
an Apriori algorithm and multi-objective search. The first
component of our approach is based on an Apriori algorithm
[22] to generate association rules using the refactoring history
and quality analysis of 18 projects of different sizes and
categories. We used RMiner [23] to detect the refactoring
operations performed between the commits. These association
rules represent patterns linking a combination of refactoring
types with their location, characterized using structural metrics,
to their impact on improving the quality attributes/fitness
functions (e.g. extendibility, functionality, flexibility etc.). Thus,
these patterns were used to 1) initialize the first population of
solutions, 2) select which refactorings of a solution to replace
during crossover and mutation in order to avoid destroying good
patterns and 3) explain the obtained refactoring sequence per
solution to the developers by decomposing it to sub-sequences
with their potential impact on quality improvements.

We evaluated the execution time, quality of refactoring rec-
ommendations and identified refactoring patterns using different
evaluation metrics. Statistical analysis of our experiments based
on 4 open source systems showed that our proposal performed
significantly better than four existing search-based refactoring
approaches [9], [11], [24], [25] and an existing refactoring tool
not based on heuristic search, JDeodorant [26], in terms of
improving the quality and enhance the trustworthiness to apply
the recommended refactorings. We used these 5 refactoring
tools and the 4 open source projects because 1) they are
representative of existing automated multi-objective search-
based refactoring techniques, 2) they are publicly available
including the non search-based tool and 3) the familiarity of
the participants with the open source systems that already part
of an existing benchmark not constructed by the authors of
this paper to avoid any potential bias [15]. We did not compare
with manual and interactive refactoring techniques to ensure a
fair comparison and focus on the scope of the contributions of
this paper.

Replication Package. All material and data used in our
study are available in our replication package [27].

II. X-SBR APPROACH

A. Overview

The goals of this paper are to 1) develop a knowledge-
informed NSGA-II [28] by designing operators that prevent
the destruction of good patterns in a solution 2) explain the
decision made by the algorithm and give justifications to the
users about why a refactoring solution can improve specific

quality objectives by extracting the relevant patterns and 3)
improve the population initialization by using the knowledge
from the history of refactorings to create the individuals of
the first generation rather than randomly generating them. To
reach the stated goals, our approach includes the following
steps.

Step 1: Data collection and static analysis of the code to
extract refactoring operations and quality metrics.

Step 2: Generation of association rules to link quality metrics
with refactoring operations from the data collected in
Step 1.

Step 3: Design of a knowledge-informed NSGA-II including
the population generation and change operators based
on the rules extracted in Step 2.

We note that only Step 3 needs to be executed on a new
system to generate refactoring recommendations. Figure 1
summarizes our approach. It takes multiple commits of different
systems that the developer worked on as input. For each commit,
we analyze the source code automatically to extract low- and
high-level quality attributes (refer to Table II) and we extracted
the refactoring using RMiner [23]. Based on the collected data,
we applied the Apriori algorithm to find association rules to link
low-level quality attributes and refactoring operations with high-
level quality attributes. Then, we designed and implemented
a knowledge-informed NSGA-II to efficiently generate the
initial population and perform change operators as detailed
later. Finally, our approach can identify the specific refactoring
patterns in each solution responsible for the fitness values of
each solution improvement or deterioration in the Pareto front.

B. Training Data

1) Quality Metrics: To evaluate the code quality of the
systems, we selected the QMOOD model of Bansiya and Davis
[10]. This hierarchical model defines six high-level quality
attributes (described in Table II) that are computed using a set
of eleven weighted object-oriented design properties (described
in Table I). We selected this model as it has been extensively
used in industry and existing refactoring studies [9], [10], [15],
[24], [29]–[31] to assess the quality of software systems. Thus,
the paper is not making any new assumptions/validations about
QMOOD.

2) Extracting History of Refactorings: In this study, we used
RMiner, a tool proposed by Tsantalis et al. [23], to extract the
refactoring operations performed between Git commits. RMiner
detects a total of 28 refactoring types at multiple granularity
levels—Package, Type, Method, and Field. These types are the
following: change package, extract and move method, extract
class, extract interface, extract method, extract subclass, extract
superclass, extract variable, inline method, inline variable, move
and rename attribute, move and rename class, move attribute,
move class, move method, move source folder, parameterize
variable, pull up attribute, pull up method, push down attribute,
push down method, rename attribute, rename class, rename
method, rename parameter, rename variable, replace attribute,
and replace variable with attribute.



Fig. 1: Approach Overview

TABLE I: Design Metrics

Design Metric Design
Property

Description

Design Size in
Classes (DSC)

Design Size Total number of classes in the design.

Number Of Hierar-
chies (NOH)

Hierarchies Total number of ”root” classes in the design
(count(MaxInheritenceTree (class)=0))

Average Number of
Ancestors (ANA)

Abstraction Average number of classes in the inheri-
tance tree for each class.

Direct Access Metric
(DAM)

Encapsulation Ratio of the number of private and pro-
tected attributes to the total number of
attributes in a class.

Direct Class Cou-
pling (DCC)

Coupling Number of other classes a class relates
to, either through a shared attribute or a
parameter in a method.

Cohesion Among
Methods of class
(CAMC)

Cohesion Measure of how related methods are in a
class in terms of used parameters. It can
also be computed by: 1 − LackOfCohe-
sionOfMethods()

Measure Of Aggrega-
tion (MOA)

Composition Count of number of attributes whose type
is user defined class(es).

Measure of
Functional
Abstraction
(MFA)

Inheritance Ratio of the number of inherited methods
per the total number of methods within a
class.

Number of
Polymorphic
Methods (NOP )

Polymorphism Any method that can be used by a class
and its descendants. Counts of the number
of methods in a class excluding private,
static and final ones.

Class Interface Size
(CIS)

Messaging Number of public methods in class.

Number of Methods
(NOM)

Complexity Number of methods declared in a class.

We selected RMiner since it achieved accurate results in
detecting refactorings compared to the state of-the-art tools,
with a precision of 98% and recall of 87% [23]. We provide in
the validation section the details of the collected data related
to refactorings and quality metrics on open source projects.

C. Association Rule Mining

Apriori is an algorithm for frequent item-set mining and
association rule learning that was first defined by Agrawal
et al. [22]. A frequent item-set is a set of items appearing
together in a database meeting a user-specified threshold. The
algorithm starts by finding the frequent individual items in
a database and expand them to larger and larger item-sets
as long as the appearance of those item-sets is larger than
the threshold set by the user. The frequent item-sets found
by Apriori can be used to generate association rules which
highlight general trends in the database. The pseudo code of
the Apriori algorithm can be found in the online appendix [27].
Before applying the Apriori algorithm, we preprocessed the data
by performing discretization. We transformed the continuous

design and QMOOD variables into discrete intervals using a
combination of strategies: equal interval width, equal frequency,
and k-means clustering. We kept the discretization results that
generate the strongest rules in terms of confidence, support
and lift. In our study, the transaction database D consists of
the list of classes of all commits that underwent a refactoring,
their QMOOD/design metrics after discretization, and applied
refactoring operations. The support threshold we considered
was equal to 0.936. The number 0.936 was determined through
trial and error: It is the lowest number that we used without
getting an out of memory error. If we go any higher, we get
too few rules, and lower we get an error. We defined three
types of constraints on the generation of the rules:

• The left-hand side needs to include only item-sets with
elements belonging to the design properties AND applied
refactoring operations.

• The right-hand side needs to include only item-sets with
elements belonging to the QMOOD metrics.

• The left-hand side needs to have at least 4 elements from
the design properties item-set.

Fig. 2: Example of an association rule

We included both the design metrics and the refactoring
operations in the left-hand side of the rules to have a more
relevant association of the refactoring operations with the high-
level metrics. For example, we tend to apply the refactoring
operator Increase field Security when the Direct Access Metric—
ratio of the number of private and protected attributes to
the total number of attributes in a class—is low. Figure 2
represents an example of one of the rules generated by the
Apriori algorithm. The items in blue, red, and green are
respectively the refactoring operations, design metrics, and
QMOOD metrics, respectively. The rule can be interpreted as
follows: when developers have applied the refactoring types
Extract and move method and Inline Variable in a class that
has the design metric CIS, MOA, NOH and NOM within
the intervals of (−2.484, 496.8], (−0.042, 8.4], (−0.0002,
0.0002], and (−2.485, 497.0] respectively, then the change
(as the difference between before and after refactoring) in
extendibility and flexibility will be in the range of (−0.2, 0.5],
(−0.2, 0.5] respectively. We designed a user-friendly interface



TABLE II: QMOOD Metrics

Metric Definition Formula
Reusability The ability of a design to be reused to a new problem without

significant effort.
-0.25 × Coupling + 0.25 × Cohesion + 0.5 × Messaging + 0.5 × Design Size

Flexibility The ability of a design to be adapted to provide functionality related
capabilities easily.

0.25 × Encapsulation - 0.25 × Coupling + 0.5 × Composition + 0.5 × Polymorphism

Understandability The property of a design that enable it to be easily learned and
comprehended.

-0.33 × Abstraction + 0.33 × Encapsulation + 0.33 × Coupling + 0.33 × Cohesion
- 0.33 × Polymorphism - 0.33 × Complexity - 0.33 × Design Size

Functionality The responsibility assigned to the classes of a design, which are made
available by classes through their public interfaces.

0.12 × Cohesion + 0.22 × Polymorphism + 0.22 × Messaging + 0.22 × Design
Size + 0.22 × Hierarchies

Extendibility The ability of an existing design that allow for the incorporation of
new requirements in the design easily.

0.5 × Abstraction - 0.5 × Coupling + 0.5 × Inheritance + 0.5 × Polymorphism

Effectiveness This refers to the design’s ability to achieve the desired functionality
and behavior using object-oriented design concepts and techniques.

0.2 × Abstraction + 0.2 × Encapsulation + 0.2 × Composition + 0.2 × Inheritance
+ 0.2 × Polymorphism

in our web-app supporting the implementation of the approach
proposed in this paper so the users can easily understand the
explanations rather than reading mined association rules. For
example, the UI highlighted the metrics contributing to the
recommendation of the refactoring and so on.

D. Knowledge-Informed and Explainable NSGA-II for Search-
Based Refactoring

1) Proposed Algorithm: NSGA-II [28] is a well known, fast
sorting multi-objective optimization algorithm that has been
applied extensively to solve various optimization problems
in software engineering [12], [13], [15], [32]. It tries to find
non-dominated solutions, which cannot improve one objective
without deteriorating others and exhibit different trade-offs
between several conflicting objectives. In our study, the goal
of the algorithm is to find non-dominated solutions balancing
the six QMOOD quality metrics listed in Table II. The pseudo
code of our adaptation of NSGA-II is presented in Algorithm
1. The search space consists of different refactoring operations
applied to various code locations. Each operation is represented
by an action (e.g., push down field, move method, move field,
extract sub class) and its parameters (e.g. source class, target
class, attributes). A vector is used to represent a candidate
solution. Each dimension represents a refactoring operation to
apply. It is required to assess the feasibility of solutions and see
whether they maintain the behavior of the system using a set
of pre- and post-conditions defined by Opdyke [33]. To enable
the static analysis of the source code, we used the Soot parser
[34] which is a compiler framework for Java (bytecode). It
allows the construction of a call graph which is a collection of
edges representing all known method invocations in a system.
To calculate the fitness functions, the refactoring operations
are applied automatically on the source code (to calculate the
number of skipped invalid refactorings) then, we generate the
call-graph. After that, we calculate the fitness functions by
considering the changes in QMOOD values of the call graph
before and after we apply the refactoring operations. We detail
in the following three main components that we design to
improve the regular NSGA-II algorithm: 1) the population
generation; 2) change operators and 3) the explanations for the
selected solution from the Pareto front.

2) Initial population: The initial population strategy is one
of the important factors that affect the performance of search
algorithms. The initial population has a key impact on the

Algorithm 1 Pseudo code of Knowledge-Informed and Ex-
plainable NSGA-II adaptation for refactoring recommendation
problem

1: Inputs: call graph of a software system P , refactoring operations
TC

2: Output: subset(s) of the refactoring operations
3: Begin
4: I:= Instantiation(TC)// vectors of refactoring
operations

5: P0:=set of(I)//Population Initialization
6: t:=0
7: Repeat
8: Ct:=apply Genetic Operators(Pt)//Apply the genetic
operators on population Pt

9: Gt:=Pt ∪ Ct // Combine parent and offspring
populations

10: for all I ∈ Gt do
11: Extendibility(I):=calculate Extendibility(P )
12: Effectiveness(I):=calculate Effectiveness(P )
13: Functionality(I):=calculate Functionality(P )
14: Understandability(I):=calculate Understandability(P )
15: Flexibility(I):=calculate Flexibility(P )
16: Reusability(I):=calculate Reusability(P )
17: end for
18: F:=fast Non Dominated Sort(Gt) // F=(F1,F2,...),

all nondominated fronts of Gt

19: Pt+1 = ∅
20: i:=1
21: while |Pt+1| + |Fi| < Max size do
22: Crowding distance assignment(Fi) // calculate

crowding distance in Fi

23: Pt+1= Pt+1 ∪ Fi // include ith nondominated
front in parent pop

24: i:=i+1
25: end while
26: Sort (Fi, ≺n) // sort in descending order using

≺n

27: Pt+1= Pt+1 ∪ Fi [1. . . (Max size − |Pt+1|)] // choose
the first Max_size - |Pt+1| elements of Fi

28: t:=t+1 // increment generation counter
29: until t=Max iteration
30: best solutions := first front(Pt)
31: return best solutions

execution time and the quality of the generated Pareto front.
We first start by looking for all the rules, generated by the
Apriori algorithm from the refactoring history, that can be
applied to the classes of the system to be refactored. In other
words, we look for the rules where there exist at least one



class, from the system we are trying to refactor, with design
metric values that satisfy/match the left-hand side of the rules.
Then, we add all the refactoring operations of those rules in
one unified pool. We note that we keep the refactorings of each
rule as a group—also referred to as pattern—in a way that they
are used together as a sub-sequence in the refactoring solution
vector. The reason behind this grouping is that each group of
refactorings tend to occur together according to the frequent
item-set principle and the refactoring history of developers.
Therefore, suggesting them together in a refactoring solution
provides more personalized and practical recommendations.
To create an initial population of size N, we randomly choose
groups of refactorings from the pool we formed until we fill
N ordered vectors.

3) Crossover: We first start by randomly picking two parents,
S1 and S2, from the current population. Then, we create cloning
copies of the parents for the new pair of offspring S’1 and S’2.
Next, we extract the Apriori rules that satisfy the following
two conditions:

• The refactoring pattern in the left-hand side of the rule
exists in S1

• The design metric intervals in the left-hand side of the
rule contain the values of the source class design metrics
in the refactoring operations of S1.

We do the same for the second parent S2. We end up having
two rule sets R1 and R2 related to S1 and S2 respectively.
Let O1 and O2 be the objectives (e.g. the QMOOD metrics)
in the right-hand side of the rules in R1 and R2 respectively.
Now, we compute the fitness function of S1 and S2 for all the
objectives in O1 ∩O2 and we compare them. Let us consider
that S1 has a higher reusability than S2. Thus, the algorithm
will look for the rule R in R1 that contains reusability in its
right-hand side. We extract the refactoring operations from S1

that match the refactoring pattern contained in R and transfer
it to S’2. We replace the genes of S2 in S’2 that are not used
by any patterns contained in S’2 for other objectives for which
S2 has a higher value in comparison to S1. We do the same for
all the objectives in O1 ∩O2. This crossover strategy allows
us to keep the strengths and fix the weaknesses of the parents
in the next generation while conserving the personalization
aspect and practical abilities of the solutions.

4) Mutation: Mutation is a genetic operator used to preserve
genetic diversity from one generation to the next in a genetic
algorithm. Mutation involves a change in chromosome structure
by altering one or more genes in a chromosome. It occurs
according to a user-definable mutation probability. In our study,
we set this probability to 0.1 . For each solution S, we randomly
select a floating-point value. If this value is less than the
mutation probability, we follow the steps below:

• We use the Apriori rules to find the refactoring patterns
in S that improve one or more objectives.

• We deduce the refactorings that are not associated with
any pattern.

• We look for the rules that improve the weakest objective
of S.

• We choose the refactoring pattern that modifies the
maximum number of refactorings that are not associated
with any objective and we add it to S.

• If no rules are found, we choose a random number
N between 1 and half the size of S and we randomly
modify N refactorings in S from the possible refactoring
operations that the tool supports.

5) Explanations Generation: Being able to explain and trust
the outcome of a refactoring recommendation system is now
a crucial aspect of the refactoring process and to ensure the
trustworthiness of SBSE algorithms. In practice, developers
tend to dismiss applying code changes if they do not understand
why they need to be applied [35]. They may not want to take
the time and effort to refactor a system without having a proper
knowledge on the relationship between the quality metrics and
the suggested refactorings [23]. In fact, refactoring is associated
with costs such as testing the system after the changes are
applied, thus developers will only apply the refactorings that
they deem really important. To lift the lid of the black-box of the
refactoring recommendation system, we provide explanations
about how the solutions are formed. For each Pareto optimal
refactoring solution S, we look for the rules that satisfy the
following two conditions:

• The refactoring pattern in the left-hand side of the rule
exists in S

• The design metric intervals in the left-hand side of the
rule contain the values of the source class design metrics
in the refactoring operations of S.

III. EXPERIMENT AND RESULTS

A. Research Questions

In this study, we defined three main research questions.
RQ1: To what extent can X-SBR generate good refactoring

solutions compared to multi-objective refactoring tech-
niques?

RQ2: To what extent can X-SBR reduce the number of invalid
refactorings compared to multi-objective refactoring
techniques?

RQ3: To what extent can X-SBR provide relevant solutions and
explanations compared to the state of the art refactoring
techniques?

To answer RQ1, we collected the source code of 711 commits
from 18 open-source systems. We performed static analysis on
the code to compute low- and high-level code quality metrics.
Then, we used RMiner [23] to detect the refactoring operations
performed between the commits. Our dataset can be found
in the appendix website [27]. After that, we used the Apriori
algorithm [22] to generate association rules that link design
metrics and refactoring operations with the QMOOD quality
metrics. Then, we used these rules to choose strategically the
initial population and improve the change operators of the
traditional NSGA-II [24]. The rules are used to favor good
patterns of the solutions and penalize bad ones.

To evaluate the efficiency of our algorithm, we selected
four systems described in Table III since they are used in



existing refactoring benchmark [24] and the participants of
our study are familiar with them (RQ3). We compared four
NSGA-II variations that optimize the same quality objectives:
(1) traditional NSGA-II (Mkaouer et al. [24]) which is basically
Algorithm 1, but with random initialization, random mutation,
and random crossover, (2) NSGA-II with an improved initial
population strategy, random crossover and random mutation,
(3) NSGA-II with improved change operators and random
initial population strategy, and (4) NSGA-II with improved
change operators and initial population strategy (X-SBR). To
ensure a fair comparison, we only limited the baseline to
these four techniques since our proposal is a variation of
the work of Mkaouer et al. [24]. However, we extended
our baseline in RQ3 when evaluating the relevance of the
refactoring recommendations.

TABLE III: Systems considered for validation

System Release # of Classes KLOC
ArgoUML v0.3 1358 114
JHotDraw v7.5.1 585 25
GanttProject v1.11.1 245 49
Apache Ant v1.8.2 1191 112

To answer RQ2, we computed the number of conflicts in the
solutions generated by the four algorithms mentioned above
(RQ1) on the four systems listed in Table III. For that, we
calculated the number of invalid refactorings in each solution
of the Pareto fronts by checking the validity of pre-and post-
conditions of each refactoring operation.

To answer RQ3, we present to developers those association
rules that lead to the generation of each refactoring solution
in the Pareto front and their frequencies. Since the association
rules are hard to understand if they are presented as the
explanation for the recommended refactorings, we implemented
a user-friendly interface in our refactoring webapp that can
highlight the code locations and metrics associated with the
recommended refactorings. To validate the usefulness of our
explanations, we conducted a survey with a group of 14 active
programmers to identify and manually evaluate the relevance
of the refactorings that they found using X-SBR.

Since the manual validation is limited to 14 participants, we
considered another evaluation which is based on the percentage
of fixed code smells (NF) by the refactoring solution. The
detection of code smells after applying a refactoring solution
is performed using the detection rules of [36]. The detection
of code smells is subjective and some developers prefer not
to fix some smells because the code is stable or some of
them are not important to fix. To this end, we considered
another metric based on QMOOD that estimates the quality
improvement of the system by comparing the quality before and
after refactoring independently from the number of fixed design
defects. Based on the two above metrics, we can evaluate the
different approaches without the need of developers evaluation.
The baseline to answer RQ3 includes the different existing
multi-objective techniques [9], [11], [24], [25] and also a tool,
called JDeodorant [26], not based on heursitic search. All the
selected search-based refactoring techniques for the baseline

of RQ2 are based on multi-objective search but using different
fitness functions and solution representation which may confirm
if good refactoring recommendations are actually due to our
knowledge-based component and not to the design of the
algorithm. The current version of JDeodorant is implemented
as an Eclipse plug-in that identifies some types of design defects
using quality metrics and then proposes a list of refactoring
strategies to fix them. For the comparison with JDeodorant, we
limited the comparison to the same refactoring types supported
by both X-SBR and JDeodorant.

B. Evaluation Metrics

To address the three research questions described in the
introduction section, we defined the following metrics and
applied them on a data set, described in the next subsection.
For RQ1, we generated association rules that link design metrics
and refactoring operations with QMOOD metrics. To evaluate
these rules, we computed support, confidence, and lift [37].

Support: Support reflects how frequently the item set appears
in the dataset. In our problem, it is defined as the ratio of the
classes that contain D ∪R ∪Q to the total number of classes
in the dataset where D is a set of design metrics intervals, R
is a set of refactoring operations and Q is a set of QMOOD
intervals.

support(D,R ⇒ Q) = P (D ∪R ∪Q) (1)

where P(D ∪R ∪Q) is the probability of cases containing D,
R and Q all in the same transaction.

Confidence: Confidence reveals how often the rule has been
considered to be correct. In our approach, confidence is defined
as the ratio of the number of classes that contain D ∪R ∪Q
to the number of classes that contain D ∪R. It evaluates the
strength of a rule. The higher the confidence the more likely
it is for Q to be present in transactions that contain D ∪R.

confidence(D,R ⇒ Q) = P (Q|D ∪R)

= P (D∪R∪Q)/P (D∪R)
(2)

Lift: Lift is defined as the confidence of the rule divided
by the expected level of confidence. A lift value higher than
1 means that there is a positive correlation between D ∪ R
and Q. If the lift is smaller than 1, it means that D ∪ R is
negatively correlated with Q. A lift value almost equal to 1
means that we cannot say anything about the correlation of
D ∪R and Q.

lift(D,R ⇒ Q) = confidence(D,R⇒Q)/P (Q)

= P (D∪R∪Q)/P (D∪R)∗P (Q)
(3)

To evaluate the quality of solution sets obtained by all
four algorithms mentioned above, we used the following three
metrics as performance indicators:

• Contributions (IC) [38]: It measures the proportion of
solutions that lie on the reference front RS [39]. The higher
this proportion the better is the quality of the solutions.



• Hypervolume (IHV ) [40]: It computes the volume covered
by members of a non-dominated set of solutions in
the objective space. A higher value of hypervolume is
desirable, as it demonstrates better spread and convergence
of solutions.

• Inverted Generational Distance (IGD) [41]: It computes
the average Euclidean distance in the objective space
between each solution in the Pareto front and its closest
point in the reference front RS. Small values are desirable.

For RQ2, we want to estimate the feasibility of the solutions
generated by the four algorithms. For that, we compute the
number of invalid refactorings in each solution of the Pareto
fronts by inspecting the validity of pre-and post-conditions of
each refactoring operation. These conditions are discussed by
Opdyke et al. [33]. We checked the pre and post-conditions
automatically by verifying that (certain parts of) the behavior of
the software is preserved by the refactoring. We have carefully
validated the pre- and post-conditions of the refactoring types
as part of our previous studies [REF]. The exhaustive list can
be found in the online appendix [27].

For RQ3, the goal is to validate the refactoring solutions
generated by X-SBR from both quantitative and qualitative
perspectives and compare them with those generated with
baseline. For the quantitative validation, we calculated precision
and recall scores to compare between refactorings suggested by
X-SBR and those expected based on the participants assessment.
We also did the same using the tools of the baseline.

Precision =
X-SBR solutions ∩ Expected Refactorings

X-SBR solutions
(4)

Recall =
X-SBR solutions ∩ Expected Refactorings

Expected Refactorings
(5)

For the qualitative validation, we asked the participants to
assign 0 or 1 to every refactoring of the solutions generated by
both tools. A 0 means that the refactoring is not applicable and
inconsistent with the source code; 1 means that the refactoring
is meaningful and relevant. We computed manual correctness
which is defined as the number of meaningful refactorings
divided by the total number of recommended refactorings.

Manual Correctness =
|Meaningful Refactorings|

|Recommended Refactorings|
(6)

We have also calculate the number of code smells fixed by
the recommended refactorings. Formally, NF is defined as:

NF =
#fixed code smells

#code smells
∈ [0, 1] (7)

The gain for each of the considered QMOOD quality
attributes and the average total gain in quality after refactoring
can be easily estimated as:

G =

6∑
i=1

Gqi

6
and Gqi = q′i − qi (8)

where q′i and qi represents the value of the QMOOD quality
attribute i after and before refactoring, respectively.

We finally asked the participants to evaluate the rules that are
intended to explain the creation of the Pareto front solutions.
For that, we randomly picked between 2 and 5 refactoring
solutions per system and their explanations. Then, we asked
them to assign a grade on a Likert scale of 1-5, 1 being the
lowest (not relevant), 5 being the highest (very relevant) to
every rule to indicate how helpful it is in explaining the creation
and relevance of the refactoring solution.

C. Parameters tuning

Parameters setting plays an important role in the perfor-
mance of a search-based algorithm. In order to ensure a fair
comparison of the results of the four algorithms, we performed
the same number of evaluations per run and used the same
sizes for the initial population. We tested 50, 100, 200, 300
and 500 for the initial population and 1 000, 2 500, 5 000,
10 000 and 100 000 for the maximum number of evaluations.
We ended up by choosing 10 000 for the maximum number of
evaluations and 100 for the initial population. The crossover
and mutation probabilities are set to 0.6 and 0.4 respectively.
In order to have significant results, for each couple (algorithm,
system), we use the trial and error method in order to obtain a
good parameter configuration. Trial and error is a fundamental
method of problem solving. It is characterized by repeated and
varied attempts of algorithm configurations. Thus, a reasonable
set of parameter values have been studied.

Because of the stochastic nature of the used meta-heuristic
algorithms, different runs of the same algorithm solving the
same problem typically lead to different results. For this reason,
we performed 30 runs for each algorithm and each project to
make sure that the results are statistically significant. For each
evaluation metric, we used the Wilcoxon rank sum test [42] in
a pairwise fashion in order to detect significant performance
differences between the algorithms (X-SBR vs each of the
competitors) under comparison based on 30 independent runs
as recommended by existing guidelines [43].

We found that all the results above based on the different
measures were statistically significant on 30 independent runs
using the Wilcoxon test with a 95% confidence level (α < 5%).
The p-values of the pairwise analysis were lower than 0.01 in
all cases.We have also calculated Eta squared (η2) which is
a measure of the effect size (strength of association) and it
estimates the degree of association between the independent
factor and dependent variable for the sample. Eta squared is
the proportion of the total variance that is attributed to a factor
(the “refactoring methods” in this study). Table IV reports Eta
squared values for each pair of software projects and metrics.
These values shows to what extent different algorithms are the
cause of variability of the metrics.

D. Subjects

We selected 14 participants to evaluate X-SBR on the 4
systems described in Table III. We carefully selected them to
make sure that they extensively applied refactorings during their



TABLE IV: Effect Size values (Eta squared (η2)) for corre-
sponding software project and metric.

System G NF MC PR RC
ApacheAnt 0.898 0.919 0.924 0.936 0.924
GanttProject 0.873 0.902 0.946 0.931 0.962
JHotDraw 0.826 0.903 0.918 0.836 0.962
ArgoUML 0.813 0.842 0.931 0.901 0.951

previous experiences in development and also used the open
source systems extensively in their previous and current projects
in industry. They had to fill a pre-study survey that collects
background information on them such as their programming
experience, their role within their companies etc. We divided
the participants into 4 groups (2 groups of 3 and 2 groups of 4).
The groups were formed based on the pre-study questionnaire
and their familiarity with the studied systems to ensure that all
the groups have almost the same average skill level. The details
of the selected participants and the projects they evaluated can
be found in Table V (the depicted values averages across the
four participants in each row). To improve the survey outcome,
we have made every possible effort to avoid any potential
bias. We organized a two-hour lecture about software quality
assessment in general and refactoring in particular. We also
presented a demo for all the tools and gave them enough
time to explore and test the tools themselves. We tested the
trustfulness of participants and their knowledge on both the
open source systems and refactoring beforehand by asking them
to pass ten tests to evaluate their performance in evaluating and
suggesting refactoring solutions. Each participant was asked
to assess the meaningfulness and relevance of the refactorings
recommended using our tool and all the four systems. The
participants were shown recommendations created by the
authors’ approach as well as by the baseline, but without
knowing which recommendations came from which approach.
We assigned for each participant refactoring solutions from the
different tools on the same system. Since the tools generate a lot
of refactoring solutions, it is not possible to ask the participants
to evaluate all of them. Therefore, to perform meaningful and
fair comparisons, for each project and algorithm, we selected
the solution using a knee-point strategy [44]. The knee point
corresponds to the solution with the maximal trade-off between
the different objectives which can be equivalent to the mono
objective solution with equal objective weights if the objectives
are not conflicting. Thus, we selected the knee point from the
Pareto approximation having the median hyper-volume IHV
value. The average number of refactorings per participant is
62. We ensured that each refactoring was evaluated by two
developers and we considered it relevant if both of them agreed
(The overall Cohen’s kappa was 0.97). The experiment lasted
between one to two hours.

E. Results

1) Results for RQ1: We generated a total of 3097 association
rules that link the design metrics and refactoring operations
with the QMOOD quality metrics. Figure 2 shows an example

TABLE V: Participants details

System #Subjects Avg. prog. experience (years) Refactoring
experience

ArgoUML 4 10 High
JHotDraw 4 11.5 Very High
GanttProject 4 10.5 High
Apache Ant 4 12 Very High

TABLE VI: Evaluation metrics and statistics of the rules

Evaluation Metric Mean Max Min
Support 0.945 0.986 0.935
Confidence 0.986 0.992 0.959
Lift 1.000 1.002 0.999

of a rule created by the Apriori algorithm. The complete list
can be found in our online appendix [27]. Table VI contains
the average, max and min support, confidence and lift of
all the rules. The minimum support, confidence and lift are
0.935, 0.959 and 0.999, respectively. This confirms the strong
correlation between design metrics, refactoring operations and
the QMOOD metrics. After that, we compared the execution
time of the four algorithms: (1) traditional NSGA-II (Mkaouer
et al. [24]), (2) NSGA-II with an improved initial population
strategy, (3) NSGA-II with improved change operators, and (4)
NSGA-II with improved change operators and initial population
strategy (X-SBR). Figure 3 shows the average time spent
to run the four systems 30 times. In all four projects, the
traditional NSGA-II [24] has the lowest execution time which
is expected since the initialization and change operators are
done randomly. In all other three algorithms, the program needs
some execution time to access and query the large database of
rules. However, the difference in execution time is negligible
and does not exceed a few seconds. Therefore, it would be
a very small sacrifice if we get better high-quality solutions.
It is interesting to note that, for Apache Ant and ArgoUML,
the average execution time was relatively high when we used
the random initialization and the improved change operators
and was reduced significantly when we improved the seeding
strategy. This leads us to the hypothesis that, in our proposed
approach, the initialization process has a bigger impact on the
convergence of the algorithm than the change operators. Table
VII shows the mean, min and max of the Hypervolume (IHV )
and Generational Distance (IGD) Indicators of all algorithms
using the four systems. Table VIII contains the results of
the Contribution (IC) metric of the three modified algorithms
compared to the traditional NSGA-II [24]. All these indicators
show that the traditional NSGA-II exhibits more diversity
in the solutions than other algorithms. This observation is
expected as the traditional NSGA-II relies on randomness when
generating the solutions, unlike the modified versions where
the creation of solutions is guided towards the construction
of good refactoring patterns based on the Apriori rules. It
is important to note that excessive diversity can diverge the
algorithm from generating good quality solutions due to the
large search space and infinite number of possible combinations.
In other words, we can end up having a diverse Pareto front
but with many infeasible refactoring solutions. Therefore, it



Fig. 3: Average execution time (ms) of all algorithms using the four systems

is necessary to have a strategy to push the algorithm towards
creating correct solutions. However, guiding the algorithm too
much might also hurt the exploration. Maintaining diversity is
one important aim of multi-objective optimization. When clear
user preferences are not available, it is highly desirable that
a limited number of solutions can be obtained that uniformly
spread over the whole pareto-front and are as diverse as possible.
However, we want to stay away from excessive diversity that
leads the algorithm to diverge from generating good quality
solutions due to the large search space and infinite number of
possible combinations. On the other hand, selection pressure
pushes the algorithm to focus more and more on the already
discovered better performing regions in the search space and
as a result population diversity declines, gradually reaching
a homogeneous state. Through our approach, we are trying
to maintain an optimal level of diversity in the population to
ensure that progress of the search algorithm is unhindered by
premature convergence to suboptimal solutions.

Finding 1: The traditional NSGA-II [24] demon-
strates better diversity and execution time than X-SBR
but the difference is small for both metrics

2) Results for RQ2: Figure 4 shows the average number of
invalid refactorings in the solutions of the Pareto front in all four
systems using the different algorithms. The traditional NSGA-II
and NSGA-II with random initialization and improved change
operators had the largest number of invalid refactorings in their
Pareto front with values exceeding 15 invalid refactorings. The
lowest number of invalid refactorings was achieved by X-SBR.
The latter algorithms had less than four invalid refactorings
in their Pareto fronts. The reason why the combination of the
random initialization and the random or improved crossover
produce a significant number of invalid refactorings is that
the new crossover and mutation operators care more about
improving the QMOOD quality metrics rather than checking the
correctness of refactorings. However, this problem is mitigated
by initializing the gene pool with valid chromosomes based on
mining the refactoring history of several projects. This can be

observed by the reduced number of infeasible refactorings in
the solutions generated by the improved initialization method
when combined with either the random or improved change
operators.

Finding 2: Based on the results of RQ1 and RQ2, X-
SBR was able to achieve a better quality of solutions
in comparison to the traditional NSGA-II with small
sacrifices in terms of diversity and execution time.

3) Results for RQ3: We summarize in the following the
feedback of the developers based on the survey. Figure 5
contains the results of the manual correctness, precision and
recall of both our tool (X-SBR) and the state of the refactoring
techniques. X-SBR was able to achieve better scores than [24]
and existing approaches in all the previous metrics for all
systems. The average manual correctness, precision and recall
of our tool compared to that of Mkaouer et al. [24] are 0.839,
0.795, and 0.83 to 0.67, 0.56, and 0.67 respectively and much
better than the remaining tools. The participants also found our
refactoring recommendations applicable and consistent with
the source codes and their design issues.

Figure 6 summarizes what the participants think about the
explanations provided by X-SBR. For all the four systems,
more than 85% of the rules are judged relevant (score 4)
and very relevant (score 5). Only less than 3% of the rules
were judged not relevant (score 1). They mentioned that X-
SBR provided trust, clarity and understanding compared to
existing refactoring tools. They highlighted that the black-
box nature of existing refactoring tools, giving results without
a reason, is hindering them from adopting their refactoring
recommendations. According to them, this obstacle is alleviated
by our proposed approach.

Finding 3: X-SBR provided more relevant and
meaningful refactorings than the state of the art
refactoring techniques and helped the participants
understand why and how the solutions are generated



Fig. 4: Average number of invalid refactorings in the solutions of all algorithms using the four systems

TABLE VII: Results of the Hypervolume (IHV ) and Generational Distance (IGD) indicators

Hypervolume (IHV ) Generational Distance (IGD)
System Algorithm Average Min Max Average Min Max
Apache Ant Improved Initialization + Random Crossover And Mutation 0.680742 0.432318 0.935184 0.015524 0.010209 0.020846
Apache Ant Random Initialization+Random Crossover And Mutation (Traditional NSGA-II) 0.693186 0.398396 1.117279 0.031465 0.00819 0.051153
Apache Ant Improved Initialization+Improved Crossover And Mutation (X-SBR) 0.499433 0.293363 1.124596 0.064079 0.002978 0.093633
Apache Ant Random Initialization+Improved Crossover And Mutation 0.809312 0.485615 1.085356 0.019873 0.008611 0.037001
ArgoUML Improved Initialization + Random Crossover And Mutation 0.642199 0.404763 0.857439 0.024575 0.00818 0.034475
ArgoUML Random Initialization+Random Crossover And Mutation (Traditional NSGA-II) 0.777583 0.52648 1.112845 0.03008 0.002679 0.047454
ArgoUML Improved Initialization+Improved Crossover And Mutation (X-SBR) 0.641947 0.444483 1.136336 0.044481 0.002322 0.057297
ArgoUML Random Initialization+Improved Crossover And Mutation 0.690078 0.444543 1.141642 0.041118 0.005496 0.055032
GanttProject Improved Initialization + Random Crossover And Mutation 0.68693 0.566786 0.907115 0.021973 0.012951 0.029777
GanttProject Random Initialization+Random Crossover And Mutation (Traditional NSGA-II) 0.861142 0.666087 1.133707 0.022668 0.002095 0.032585
GanttProject Improved Initialization+Improved Crossover And Mutation (X-SBR) 0.782098 0.626555 0.978024 0.022406 0.011344 0.02651
GanttProject Random Initialization+Improved Crossover And Mutation 0.776723 0.655532 1.242082 0.022349 0.006756 0.029976
JhotDraw Improved Initialization + Random Crossover And Mutation 0.771315 0.588192 1.33879 0.04945 0.000903 0.071506
JhotDraw Random Initialization+Random Crossover And Mutation (Traditional NSGA-II) 0.933738 0.555179 1.281501 0.026886 0.007105 0.056431
JhotDraw Improved Initialization+Improved Crossover And Mutation (X-SBR) 0.564916 0.393056 1.083154 0.08246 0.024441 0.20624
JhotDraw Random Initialization+Improved Crossover And Mutation 0.756657 0.592614 1.217705 0.052932 0.006605 0.072263

TABLE VIII: Results of the Contributions (IC) metric

Algorithms Contribution value
Contribution of NSGA-II with random initialization +
improved change operators to traditional NSGA-II

0.34030526

Contribution of NSGA-II with improved initialization
+ random change operators to traditional NSGA-II

0.247601151

Contribution of NSGA-II with improved initialization
+ improved change operators to traditional NSGA-II

0.241613462

which boosted their trust in the refactoring tool.

IV. THREATS TO VALIDITY

Conclusion validity. The parameter tuning of the different
search-based algorithms used in our experiments creates an
internal threat that needs to be evaluated in our future work.
The parameters’ values used in our experiments were found
by trial-and-error [45].
Internal validity. The variation of correctness and speed
between the different groups when using our approach and other
tools is one potential internal threat. In fact, our approach may
not be the only reason for the superior performance because the
participants have different programming skills and familiarity
with refactoring tools. To counteract this, we assigned the

developers to different groups according to their programming
experience so as to reduce the gap between the different groups
and we also adapted a counter-balanced design.

Construct validity. The different developers involved in our ex-
periments may have divergent opinions about the recommended
refactorings in terms of relevance which may impact our results.
Almost all of our industrial collaborators in the refactoring area
are selecting major refactoring strategies based on discussions
between the architects to adopt the best alternative. For the
selection threat, the participant diversity in terms of experience
could affect the results of our study. We addressed the selection
threat by giving a lecture and tests.

External threats. We used 18 projects to generate the
association rules. To mitigate these threats, we used projects of
different sizes and domains. Moreover, we only included four
projects in our validation. The reason behind that is, first, to
attract the most amount of responses with good quality from
participants in our survey. The more tedious the task that the
participant must complete the less the quality of their input is.
The second reason is the long execution time due to running
all of the four algorithms on all of the systems 30 times.
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Fig. 5: Automated and manual evaluation of refactoring recommendations generated by the different refactoring tools

Fig. 6: Distribution of the relevance of the explanations
according to the survey results (1=not relevant-5=very relevant)

V. RELATED WORK

Many studies have used search-based techniques to automate
software refactoring by optimizing different sets of quality
metrics [9], [11], [17], [24], [25], [31]. One interesting
observation is that evolutionary algorithms are the dominant
ones in search-based refactoring (e.g. NSGA-II, NSGA-III,
etc.). Thus, we refer to evolutionary techniques when using the
term search-based in this section. The reader can refer to the
systematic literature review on search-based refactoring [7].

Harman and Tratt [11] were the first to use the concept
of Pareto optimality in search-based software refactoring to
deal with conflicting quality objectives such as coupling and

cohesion. They showed that their multi-objective technique
generates better results compared to a mono-objective approach.
Ó Cinnéide et al. [31] proposed as well multi-objective
search-based refactoring to conduct an empirical investigation
to explore relationships between several structural metrics.
They used different search techniques such as Pareto-optimal
search and semi-random search guided by a set of cohesion
metrics. Ouni et al. [46] presented a multi-objective refactoring
formulation that generates solutions that maximize the number
of detected defects after applying the proposed refactoring
sequence and minimize the semantics similarity of the elements
to be changed by the refactoring.

Alizadeh et al. [15] proposed an interactive and dynamic
search-based approach to find refactoring solutions that improve
software quality while minimizing the deviation from the
initial design. The refactorings are ranked and suggested to the
developer in an interactive fashion. The developer is allowed to
accept, modify or reject any of the recommended refactorings.
The feedback is then used to update the rankings of the
refactoring solutions.

All the above studies used the traditional random change
operators (e.g. 1-point crossover, random mutation, etc.). These
change operators are more adequate for continuous problems
and can destroy relevant patterns inside good refactoring
solutions when applied randomly on discrete problems. Fur-
thermore, the existing search-based refactoring studies are
generating the initial population randomly, which may have
a negative impact on the execution time and the quality of
the final solutions. With the large amount of data on GitHub
projects about refactorings applied by developers and their
impact, it may be possible to inject good patterns extracted
from the history of refactorings when generating the initial
population or designing knowledge-based change operators
which are the hypotheses of this paper.



It is possible that the injection of knowledge and preferences
when generating the initial population can lead to less variety
in the generated refactoring solutions, thus to less exploration
of the search space. This is why we still used in our approach
a random generation for part of the population to preserve
variety in the initial population.

VI. CONCLUSION

We propose in this paper, X-SBR, an enhanced knowledge-
informed multi-objective search algorithm to provide person-
alized and relevant refactoring recommendations. X-SBR im-
plements new initial population and change operators methods
using the refactoring and quality history of 18 projects and
provides explanations regarding why and how the solutions
are formed and impacted the fitness functions. Based on our
quantitative and qualitative validation using 4 open-source
systems, our tool was able to achieve more relevant refactoring
solutions than existing refactoring techniques with a small
sacrifice in terms of diversity and execution time. The results
of the survey conducted with 14 software developers provide
strong evidence that our tool improves the quality of refactoring
solutions and helps developers understand, appropriately trust,
and effectively manage the refactoring process.

In our future work, we will add other fine-grained refac-
toring operations, such as Decompose Conditional, Replace
Conditional with Polymorphism, and Replace Type Code with
State/Strategy. Another future research direction related to our
work is to include code smell history and bug reports when
generating association rules.
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