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ABSTRACT
Background:Continuous Integration (CI) has becomewidely adopted
to enable faster code change integration. Meanwhile, Machine
Learning (ML) is being used by software applications for previously
unsolvable real-world scenarios. ML projects employ development
processes different from those of traditional software projects, but
they too require multiple iterations in their development, and may
benefit from CI. Aims: While there are many works covering CI
within traditional software, none of them empirically explored the
adoption of CI and its associated issues within ML projects. To
address this knowledge gap, we performed an empirical analysis
comparing CI adoption betweenML and Non-ML projects.Method:
We developed TraVanalyzer, the first Travis CI configuration ana-
lyzer, to analyze the CI practices of ML projects, and developed a
CI log analyzer to identify the different CI problems of ML projects.
Results:We found that Travis CI is the most popular CI tool for
ML projects, and that their CI adoption lags behind that of Non-ML
projects, but that ML projects which adopted CI, used it for building,
testing, code analysis, and automatic deployment more than Non-
ML projects. Furthermore, while CI in ML projects is as likely to
experience problems as CI in Non-ML projects, it has more varied
reasons for build-breakage. The most frequent CI failures of ML
projects are due to testing-related problems, similar to Non-ML and
OSS CI failures. Conclusion: To the best of our knowledge, this is
the first work that has analyzed ML projects’ CI usage, practices,
and issues, and contextualized its results by comparing them with
similar Non-ML projects. It provides findings for researchers and
ML developers to identify possible improvement scopes for CI in
ML projects.

CCS CONCEPTS
• Software and its engineering; • Computing methodologies
→ Machine learning;

1 INTRODUCTION
"The whole point of Continuous Integration is to provide rapid
feedback". This is howMartin Fowler [1], who helped popularize CI,
describes it. CI is a software development process for shared reposi-
tories that automatically integrates the changes committed by their
developers. CI allows its adopters to catch bugs earlier, increase the
frequency of their releases, and integrate pull requests faster [39].
Its adoption has grown from 40.27% in 2016 [39] to 68%within larger
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teams in 2018 [3]. Machine Learning (ML) projects have also seen
an explosion in both usage and importance in recent years [37, 47].
Instead of being given an explicit solution like traditional software,
ML projects, attempt to solve a problem by analyzing data, testing
their findings, evaluating their results, and iterating on these phases.
However, similar to traditional software, ML projects rely on itera-
tion within their development. Indeed, the automation prowess of
a CI system may be a great fit for ML projects’ need for iteration.
However, it’s notable that most CI tools were conceived before ML
project development became mainstream, and that both CI tools
and ML projects have their specific problems. For example, debug-
ging CI build failures and errors can be non-trivial due to complex
logs [54], and ML projects require new development processes and
practices such as data engineering and model management [43], or
require a different approach to existing processes in comparison
to traditional software, such as the example of traditional testing
being ineffective on ML projects [40]. Yet, there is a gap in research
concerning the adoption of CI within ML projects, the tasks per-
formed by CI within them, as well as the problems CI tools face
when they are used in these projects. In this paper, we aim to fill
these knowledge gaps by identifying the adoption rates, current
practices, and common failures and errors related to CI within ML
projects. We used a triangulation-based [29] method to estimate
the adoption rate of CI on a set of 4031 ML projects and 4076 Non-
ML projects. Then, for our detailed CI analysis, we selected 476
ML and 202 Non-ML projects out of the larger set, using the same
criteria of CI adoption and main programming language on both
project categories. Using TraVanalyzer, our Travis CI AST ana-
lyzer, we determined the CI build goals of these projects. Using
our CI log analyzer, we analyzed these ML and Non-ML projects’
builds, and their associated job failure and error logs, from which
we determined the CI problems these projects encountered. With
our analysis, we answered 3 key questions:
RQ1:What is the adoption rate of CI among ML projects? Around
37.22% ofML projects have adopted CI, which is belowCI’s adoption
rate by our set of Non-ML projects, estimated at 45.12%, as well as
that of Open Source Software (OSS) overall, estimated to be between
45% and 68% [3]. We also found that Travis CI, the most popular
CI tool for our Non-ML project-set and Open-source software on
GitHub [39], is the most popular tool for ML projects as well, with
no sign of adoption of ML-projects-specific CI tools.
RQ2:What tasks does CI perform for ML projects? Similar to tradi-
tional software [30], Testing and building software are the most



common tasks. Code analysis is the third most common, and de-
ployment is the least common. Surprisingly, these tasks are used
more often within CI of ML projects than CI of Non-ML projects.
RQ3: How often and Why do CI builds break in ML projects? On
average, 23.87% of the CI builds of a project fail, and 14.09% of
the builds are errored, both of these build types are considered
non-successful. Build breakages in general occur at similar levels
between our sets of ML and Non-ML projects, but are more common
in both than in Open Source Software (OSS) overall. The most
common failures were caused by failed tests, errored tests, and
failures related to Code Analysis, which are also common within
our comparison set of Non-ML projects. However, ML failures show
more variability in terms of causes linked to failure of a project’s
build.
In summary, we make the following contributions:
• The first comprehensive analysis of CI adoption by ML projects
on GitHub.
• The first Travis CI configuration AST analyzer TraVanalyzer
which determines CI tasks.
• The first CI log analyzer specifically-designed for the detection
and classification of CI problems within Python-based ML and
Non-ML projects.
• A comprehensive taxonomy of CI problems in Python-basedML
and Non-ML projects, that can facilitate the fix pattern analysis.

2 BACKGROUND
Continuous integration (CI) was first introduced by Grady Booch
in 1991 [28], and this concept began to gain popularity in the early
2000s partially due to support fromMartin Fowler [1]. The founding
principle behind CI is frequent integration of code from the different
developers of a shared repository, arising from the time-consuming
and difficult task of code integration that software projects without
CI need to perform [1, 28]. In general, Continuous Integration
servers and tools automate integration by automatically validating
newly-pushed commits via the execution of building and testing
processes. CI can also include other automated tasks like code
analysis tasks, such as linting and code coverage, or deployment
tasks. A variety of CI tools and services exist, and more recently,
a few CI tools and services have been specifically designed for
ML projects or their components. Tools and services that provide
testing and versioning for ML projects, such as Kuberflow [19]
and Amazon Sagemaker [5], are generally only concerned with ML
models, and the corresponding ML project’s code base is managed
via a traditional CI tool such as Travis CI or GitHub Actions. As a
result, the majority of these aforementioned tools are generally used
in conjunction with traditional CI tools and cannot fully replace
them. Furthermore, we found no evidence of their usage within our
project set. In fact, Travis CI is also the tool that enjoys the highest
usage within our set of ML projects, as detailed in Section 5.1.

Indeed, The majority of CI-related processes, such as building
and testing, and their corresponding tools were established and de-
signed for traditional software projects, and may not be well-suited
for ML projects. For example, Unit Testing is a well-established
practice of testing functional code by comparing its results against
the expected results as defined by the test’s author [45]. Applying
this same approach to ML projects by evaluating their results on

the same testing set repeatedly can cause problems with their ac-
curacy [40]. Another example is automatic deployment, where for
traditional projects, the software and its configuration are bundled
into a deployable archive, such as a JAR, or deployable image, such
as a Docker-image, and then are pushed to their respective end-
points. For ML projects, the most frequently updated component is
the ML model [4], the deployment strategies of which may differ
from those of other components. In spite of these differences, Travis
CI, one of the most widely used CI tools [39], is the most popular
CI tool of the ML and Non-ML projects we analyzed.

A Travis CI workflow is described via a .travis.yml file, written
in YAML-based [24] Domain Specific Language (DSL), where cer-
tain settings-keywords can configure the environment or execute a
certain process. A workflow is generally referred to as a build and
can be composed of one or more stages that run sequentially, and
each stage forms a specific subset of the overall build. Stages can
be configured with the stage keyword, and by default, a build is
composed of only one stage. Each stage may be composed of one or
more Jobs that run in parallel, each executing the same sub-script in
a specific environment different from the other jobs. This is config-
ured via the build matrix, where two or more jobs can be set to run
in parallel in each stage, by specifying a different environment for
each. The keywords OS and language, which respectively set the
Operating System of a job’s container and prepare it by installing
the tools of a specific programming language, can be used multi-
ple times and with different values. For example, OS:linux with
language:Java and OS:linuxwith language:rubywill configure
two Jobs that run in Linux containers, one of which is configured
for Java projects and the other one is configured for Ruby projects.
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Figure 1: Travis CI job state machine
In further detail, a generic job’s state machine is illustrated

in Figure 1. A job has two phases, the install phase, meant for
the installation of any dependencies and preparation of the en-
vironment, and the script phase, which runs the build, test, and
other tasks specified by the developer. An errored job is a job that
experiences an issue during the install phase of its execution, after
which it immediately stops executing. A failed job is a job that
experiences an issue during its script phase, after which it executes
its "after failure" section, and the rest of its script phase. A failed
build is a build with 1 or more failed jobs and no errored jobs. An
errored build has one or more errored jobs. If no problems occur,
the job(s) and the build are considered passed. A notable exception
is that if a job experiences an issue only during its Deploy or After
Script phase, it’s still labeled as passed. A build can be manually
canceled by the developer, giving it and all its associated jobs the
canceled state.
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3 RESEARCH METHODOLOGY
3.1 Dataset
In this work, we used two data sets: the larger one is referred to as
the Breadth Corpus, on which we performed analysis to inform us
about the state of CI adoption in ML projects, and the smaller one
is referred to as the Depth Corpus, a subset of the breadth corpus on
which we performed detailed analysis to inform us about CI usage
goals, and CI problems within ML projects.
3.1.1 Breadth Corpus. Our goal was to analyze CI adoption within
a set of open-source and active Machine Learning (ML) projects,
and a similar comparison set of Non-ML projects. We define ML
projects, also referred to as ML-enabled systems, as those with
the goal of producing systems that have ML capabilities as part of
their features. For this task, we initially chose to analyze the data
set of projects proposed by Gonzalez et al. [37]. This data set is
composed of 5224 ML projects and 4101 Non-ML projects. However,
we found several problems with it via manual inspection, such as
the inclusion of toy projects and study guides among others. To
resolve this problem, two of the authors re-curated the ML projects
by reading the descriptions on their main GitHub pages and any
websites linked to by those pages, and they removed 1193 projects.
These projects either did not use ML, or were toy projects, or study
guides, or another type of repository which did not constitute a
software project. We were unable to obtain 25 Non-ML projects
from the original dataset due to delisting. The new set of projects
which forms our Breadth Corpus contains:

• 4031 ML projects: These projects are composed of ML
frameworks and libraries such as Tensorflow, as well as ML
applications such as Faceswap. All of these projects employ
Machine Learning based techniques or components, and they
either meet a specific need for the user, or have a general-
purpose usage and can be used by other developers for a
specific goal.

• 4076 Non-ML projects: These projects are considered tra-
ditional software applications, such as websites, desktop or
mobile applications etc., which do not contain or use ML-
based components or technologies.

3.1.2 Depth Corpus. After estimating the adoption rates of differ-
ent CI tools as detailed in Section 3.2.1, we found that Travis CI
was the most popular CI tool for ML projects, as detailed in Sec-
tion 5.1, which is also true for the Non-ML projects we analyzed
and open-source software in general [39]. Furthermore, for the ML
projects that used Travis CI, Python is the main language for 51.06%
of them, as reported by the GitHub API [16], and no other language
was the main language for more than 9% of them. This aligns with
the results found by Gonzalez et al. [37] concerning Python being
the most popular language for ML projects. As a result, we selected
Python-based ML projects with one or more Travis CI builds since
they represent the majority of CI-using ML projects. We then ap-
plied the same selection criteria of Python as a main programming
language and CI-usage to our Non-ML set of projects to obtain a
comparison set, which produced a smaller number of projects. This
is expected since Python is a main programming language of only
14.95% of Non-ML CI-using projects. Our depth corpus is composed
of:

• 476 ML Travis CI-using Python ML projects.

• 202 Non-ML Travis CI-using Python Non-ML projects.

3.2 Approach
In this section, we illustrate the different steps we took to select and
analyze our project set. An overview of our approach is in Figure 2.
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Figure 2: Overview of Research Methodology
3.2.1 CI Adoption Analysis. Currently, there is no standardized
approach to determine if a GitHub repository is using a CI tool.
In order to determine the adoption of different CI tools within
our set of ML projects, we developed a two-pronged approach to
estimate the adoption rates of the different continuous integration
tools, based on methods followed by Hilton et al. [39] and Gallaba
& Mcintosh [36]. First, we considered a list of CI tools proposed
by Leite et al. [42], but this list included only 4 tools and was
developed by examining traditional software projects. To enrich
it, we selected the top 1000 ML and the top 1000 Non-ML projects
in our breadth corpus and listed their filenames which had non-
source-code extensions. Then, 2 authors attempted to match their
names with the naming conventions of configuration files of CI
tools in order to identify any other CI tools in our project set. We
also added support for tools such as ease.ml\ci, that rely on the same
configuration files of other tools by introducing their own segments,
since the filename-based approachwould not allow us to detect their
usage. Second, we scanned the projects’ repositories 1 to determine
if they had files or file segments indicative of the usage of a specific
CI tool, which we collected in the previous step. Finally, we selected
the CI tools with an adoption rate of 5% or more as measured by
our first File-system-based approach, which was GitHub Actions
and Travis-CI, and then queried their APIs and used the existence
of one or more builds to establish a project’s adoption of a specific
CI tool. However, we found conflicts between the two data sources:
some projects had CI configuration files without any builds in the
corresponding CI tool’s server, or vice-versa. For example, while
we found 852 ML projects with Travis files in their repositories,
only 559 of them also had builds on Travis’s server, and we found
an additional 376 ML projects which had Travis builds but did not
currently have a Travis configuration file in their repository. Even
more notable differences were found in the case of GitHub actions,
where 858 ML projects had configuration files for this tool, but only
477 of them had GitHub Actions builds, and we did not find any
ML projects which had GitHub Actions builds but no configuration
files. To resolve these conflicts and avoid false positives or false
negatives regarding CI adoption, we applied a triangulation-based
method [29] and defined two types of CI adoption:

1Last updated on 08/13/2021
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Historical Adoption: A project that has builds on a specific CI
tool’s server, but does not have the CI tool’s configuration files in
its current repository, is assumed to have used the CI tool in the
past.
Current Adoption: A project that has builds on a specific CI tool’s
server and has the tool’s configuration file(s) within its current
repository, is assumed to be currently using the CI tool.

This allowed us to resolve any data conflicts and answer RQ1 re-
garding the popularity of CI withinML projects. The complete list of
CI tools we considered is: AppVeyor [10], Buildbot [7], CircleCI [8],
Cloud Build [9], CodeBuild [25], GitLab CI [17], Jenkins [20], Travis
CI [22], GitHub Actions [15], VSTS [11] and ease.ml\ci [14].

3.2.2 CI Task Analysis. CI configuration files (e.g., .travis.yml) de-
fine continuous integration tasks such as build, test, deployment,
etc. Travis CI adopted a DSL that is based on YAML. However, ana-
lyzing a Travis CI configuration file is not trivial as it can invoke
system commands, external shell scripts, Python scripts, among
others, and can also include steps to integrate ML components (e.g.,
data, model, etc.). To overcome these challenges, we developed the
first .travis.yml AST [44] analyzer, TraVanalyzer, to parse Travis
configuration files from our Depth Corpus projects, and applied a
command clustering approach to group commands to allow for man-
ual annotation and analysis. Details of the parser and the AST-based
command clustering approach are discussed in the subsequent para-
graphs.
AST Parsing of CI Configuration File:

Since Travis CI configuration files are written in a domain-
specific language (DSL) language extended from YAML, we chose
to extend the Java-based YAML parser DocConverter [12] to ex-
tract top-level entities of the configuration file. Figure 3 shows
such an example where, in Phase I, top-level configurations are
parsed in an AST format. However, based on Travis CI Documenta-
tion [6], install, script, before_install, before_script,
after_script, after_success, after_failure job phases can
invoke external system commands and bash syntax that includes if-
else conditions, looping, variable usage, etc. Figure 3 Phase I shows
an example of that with a script-block that contains an embedded
bash script that uses an if-condition to invoke the make flake com-
mand. We developed a Bash script parser that can parse and extract
such embedded scripts, and generate their ASTs. Since Bash scripts
support variable assignment and usages, we applied a data-flow
analysis [34] on the extracted AST to analyze its condition checks.
However, in many cases, the scripts use system environment vari-
ables such as TRAVIS_OS_NAME for if-else conditions. Since system
variables cannot be determined by just analyzing the embedded
scripts, we considered these conditions as always true. After gen-
erating the AST for the embedded script, we extended the Phase I
AST to generate the Phase II AST with Bash annotations. We used
the Phase II AST as depicted in Figure 3(c) for the CI task analysis
of ML projects. On a programmatic level, DocConverter allows us
to ingest the file into an object, which we then convert to a Tree
object, as represented in Phase I. We then apply the embedded
script parsing to generate the object represented in Phase II.
Command Clustering and Task Analysis:

With the ASTs generated for the Travis CI configuration file, we
can analyze the different stages and properties described in it, such

as the language and OS. However, the purpose of external tools and
commands invoked is difficult to determine. To solve this problem,
we extracted the commands from the Travis AST objects, generated
from the .travis.yml files belonging to the ML and Non-ML projects
within our depth corpus, and applied AST-clustering based on the
commands’ names. We chose to omit the commands’ parameters
as they are often project-specific. In total, we extracted 258 distinct
commands and/or tools, corresponding each to one cluster. Two
of the authors then manually reviewed the tools and commands
documentations’ to categorize them into build, test, code analysis,
and deployment tools. This categorization is used in order to answer
RQ2 regarding the CI tasks of our Depth Corpus projects.

3.2.3 CI Problem Frequency and Taxonomy Study. Continuous inte-
gration workflowsmay experience failures or errors due to a variety
of reasons. To determine the build breakage2 and success rates of
the projects in our Depth Corpus, we used the Travis CI API via
PyTravisCI [21] to obtain information about their respective builds
and jobs, as well as the logs pertaining to their failed and errored
jobs. Within this analysis, we opted to use the CI information of
each project within one year of a project’s most recent build3. We
opted for this moving window of dates in order to consider only the
most recent builds of each project, and we chose this relatively large
window to minimize the chance of excluding information from less
active projects. We found a total of 79868 builds of our ML projects
and 7519 builds of our Non-ML projects using this moving-window
criterion. The higher total number of builds for ML projects can
be explained by the inclusion of projects such RasaHQ/rasa_core
and Cloud-CV/EvalAI with builds as high as 4715 and 1680 in the
selected window, while the highest number of builds for a single
project was 733 for Non-ML projects within numenta/nupic. We
then applied the filtering process proposed by Gallaba et al. [35] to
avoid including duplicate builds in our analysis, which resulted in
the removal of 6157 passed, 2144 failing, and 1163 errored builds
of ML projects, as well as the removal of 694 passed, 708 failing,
357 errored builds of Non-ML projects. Finally, we generated the
average percentages of successful, failed, errored, and canceled
builds for each project, considering only their filtered builds.
Examination of existing taxonomies:

When it comes to classifying the issues causing a job failure or
a job error, a number of taxonomies exist: Beller et al. [27] classify
build failures into two categories depending on whether or not a
build failed because of a test, but this has limited usage since it
does not clarify the reasons behind a build failure when tests are
not the cause. Durieux et al. [31] analyzed build failures to extract
the issue causing a job failure. But some of their issue categories
were overly specific, such as the "Gem file not found" category that
does not generalize to projects not using Ruby, and some of them
lacked detail, such as the "Travis Limitation" category which can
be a log file length restriction, a timeout, or another Travis-related
limitation. Rausch et al.’s work [48] classifies failures into a variety
of categories related to Java projects but doesn’t generalize to other
languages or projects other than those studied. For example, their
"androidsdk" category would only occur in projects using the An-
droid SDK. Finally, none of these aforementioned taxonomies focus

2a broken build refers to a failed or errored build in the context of CI
3before August 13th, 2021
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language: python

python:

- "3.7"

script:

- - if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then 

make flake; 

fi

.travis.yml

language python script

python 3.7 IfStatement

Condition(==) Command

$TRAVIS_OS_NAME Cmd: make Param: flakelinux

.travis.yml

language python script

python 3.7 if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then 

make flake; 

fi

test
then

(a) An Example .travis.yml file (c) Phase II: Embedded Script Parsing(b) Phase I: Top Level parsing

Figure 3: Overview of Parsing an example .travis.yml file in AST Format
on ML projects, as they were developed for traditional software.
When testing the preexisting log analyzers associated with the
aforementioned taxonomies, we found none of them reached a sat-
isfactory saturation rate, which in our context is the percentage of
failure logs within which a failure type was detected. For example.
Travis Listener’s Log Parser [31] failed to detect the failure type
within 71% of 7655 randomly selected job failure logs pertaining
to projects from our Depth Corpus, and Rausch et al.’s [48] classi-
fier would not work since it is intended for Java projects, while
the projects we are analyzing are Python-based. Overall, we found
these existing taxonomies either have a very broad categorization
that lacks detail, or a narrow categorization that does not directly
relate to the failure and error classifications of the Travis CI builds
that we specified. Furthermore, none of these taxonomies or their
associated tools were designed for Python-based ML projects, and
we found them inadequate for the job logs we aimed to analyze.
Creation of a new taxonomy:

In order to resolve the aforementioned problems and answer
RQ3 regarding the underlying reasons behind job failures and job
errors, we created a new taxonomy and its associated log analyzer.
We used open coding [41] to build our taxonomy of failures and
errors and their associated log analyzer composed of regexes and
scripts. During this step, we considered the following builds, se-
lected via the filtration process described earlier: 1262 failed builds
and 1144 errored builds belonging to Non-ML projects, and 19621
failed build and 7014 errored builds belonging to ML projects. Then,
we attempted to obtain the logs pertaining to job failures connected
to these broken builds, and succeeded at downloading 35965 and
7153 job failure logs of ML and Non-ML projects respectively. In
the following step, we randomly selected our first set of 100 failure
log files, which belonged to 71 different projects4, from the set of
all the failure logs. Then, we manually analyzed them to extract
regular expressions belonging to different failure types, each of
which is associated with one CI task. Fourth, we wrote a log anal-
ysis script that uses these regexes for classifying failures within
their respective sub-types. Finally, we tested our log analyzer on
the remaining set of failure logs to estimate our saturation rate.
The rate was lower than 90% for both ML and Non-ML projects, so
we repeated the previously-described process on a second set of
100 randomly-selected failure log files from 33 different projects
to enrich our initial set of regexes. This allowed us to reach a sat-
uration rate of 91.59% and 91.15% on ML and Non-ML job failure
logs, respectively. In total, we used 2 sets each containing 100 log
files to construct our failure taxonomy. For the error taxonomy,
we repeated this same process by analyzing 2 sets of 100 error log
files from 90 different projects, randomly selected from 18857 error

4no uniqueness criterionwas applied regarding projects or their categories during the
process of log-selection as to not influence the randomness of the process

logs, 14121 of which belonged to ML projects and 4736 of which
belonged to Non-ML projects. This allowed us to reach a saturation
rate of 95.05% and 96.16% on ML and Non-ML on job error logs,
respectively.

This process has proven complex and time-consuming due to
the variety of tools being used across Python projects, and their
different logging conventions. For example, a test failure may be
reported in different ways across different projects all using the
same Pytest framework. It may be a line showing a test summary
such as === 2 failed, 91 passed ===, or instead, listing each
failed test e.g: FAIL Test1, FAIL Test2, or a combination of
both outputs or others. This output variability is also noted within
other tools and other processes, such as linting and code coverage.
To resolve these problems, our log analyzer had to rely on a high
number of regexes to identify a large amount of different output-
patterns, it relies on 110 regexes to analyze job failure logs, and
33 regexes to analyze job error logs. These regexes correspond to
popular python tools that are used by both the ML and Non-ML
projects we studied, making it possible to reuse the log analyzer
for other Python-based CI-using software projects.

To better organize the different types of failures we identified
via our log analyzer, we constructed our job failure taxonomy via
the following process: 2 authors followed the card sorting [32]
method of grouping similar failures and errors as identified by the
regexes into multiple main and subgroups. Then, in the case of job
failures, this hierarchy was simplified by merging most similar sub-
groups leaving only the ML-specific failure types at the 3rd level
of the taxonomy tree, to help increase the ease of understanding
and generalization of this taxonomy, after which 6 main and 18
subgroups remained. We constructed the error taxonomy using the
same method, but we chose to only leave 4 main categories as they
contained less internal variability within them in comparison to
those of the failure taxonomy.

4 EVALUATION OF ANALYSIS TOOLS
Evaluation of TraVanalyzer: To evaluate TraVanalyzer’s AST
generation, 2 authors manually evaluated 100 ASTs generated from
100 randomly selected .travis.yml files belonging to projects from
our Depth Corpus, and found that the files were parsed correctly.
This confirms the robustness of our tool regarding the generation
of accurate ASTs. Regarding TraVanalyzer’s efficacy in correctly
allowing us to determine the CI usage goals, 3 of the co-authorsman-
ually inspected Travis CI configuration files separately to categorize
different tasks executed by the CI. Fleiss’s kappa coefficient [33]
was used to find inter-annotator agreement prior to discussion,
and was on average 0.78 across the different categories, indicating
substantial agreement. The disagreements of analysis were resolved
by discussion. After evaluating the performance of TraVanalyzer
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on the manually labeled data, we found an average Precision, Re-
call, and F1-score of 98.44%, 95.45%, and 96.92%, respectively, for
identifying the different build, test, code analyzer, and deployment
tasks configured within the CI configurations file(s). These results
confirm the correctness of the proposed tool for our purposes.
Evaluation of the Log analyzer: We tested our CI Log analyzer
on a set of randomly selected logs. Two authors manually labeled
100 errored job logs and 100 failed job logs, belonging to jobs from
our Depth Corpus. These logs were not used to construct the log
analyzer. Fleiss’s kappa coefficient [33] was on average 0.73 across
the 4 Job Error types, and 0.78 across the six main Job Failure
types, indicating substantial agreement, and any disagreements
were then resolved by discussion. Our log analyzer achieved an
average Precision of 95.42%, average Recall of 92.84%, and F-1 score
of 94.11% across the main Job Failure types. It also achieved an
average Precision of 99.1%, an average Recall of 96.4%, and an F-1
score of 97.73 % across the Job Error types.

5 RESULTS
5.1 CI Adoption rates

Research Question 1:What is the adoption rate of CI among
ML projects?
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Figure 4: CI Tools Adoption rates (Excluding CI Tools with
less than 5% adoption)

To determine the prevalence of CI within ML projects, we used
the triangulation-basedmethod detailed in Section 3.2.1, and applied
it to our Breadth Corpus. This allowed us to estimate the adoption
rates of the CI tools outlined in Section 3.2.1. The first step of
our triangulation process was the File-System (FS) based process.
Overall, the CI adoption rate through this method is estimated at
37.22% for all ML projects, and the CI adoption for Non-ML projects
is estimated at 45.12%. Focusing on individual tools, the top 3 tools
adopted by ML projects were Travis CI at 21.14%, GitHub Actions
at 21.29%, and Circle CI as a distant third at 3.28%. For Non-ML
projects, the top 3 tools adopted by ML projects were Travis CI at
33.98%, GitHub Actions at 13.62%, and AppVeyor as a distant third
at 3.04%.

However, when applying the triangulation-based method, via
querying the APIs of the top 2 tools per the FS-based method for
both categories of projects, Travis CI and GitHub Actions, and then
consolidating them with the FS-based findings, we found that there
is a mismatch between the two data sources. Details about this
mismatch and the definitions of Historical Adoption and Current
Adoption we chose to resolve it are in Section 3.2.1. The current
and historical adoption rates, illustrated within Figure 4, reflect
that the popularity of Travis CI for open-source software [39] is

also evident in ML projects and our comparison set of Non-ML
projects, with GitHub Actions being a close contender in terms
of current adoption for ML projects. This is surprising given the
age of GitHub Actions, as support for CI was only added to it in
public beta in August 2019 [15]. Overall the adoption of CI by ML
projects is between 24.46% per the triangulation-based approach,
and 37.22%, per the FS-based approach, which trail behind those
of our comparison set of Non-ML projects, estimated at 38.84%
per the triangulation-based approach, and 45.12% per the FS-based
approach. The adoption rates of ML projects are also less than those
of Open source projects in general, which is estimated at 40.27%
by Hilton et al. [39] and more recently between 45% and 68% by
Digital Ocean [3], which are consistent with our findings regarding
CI adoption by our Non-ML comparison set.
5.2 CI Task Analysis

Research Question 2: What tasks does CI perform for ML
projects?
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Figure 5: CI Task Adoption Percentage

We applied TraVanalyzer on the subset of projects from our
Depth Corpuswith the current adoption of Travis: 378 ML projects
and 164 Non-ML projects in order to categorize the CI tasks of ML
projects and compare them with those of Non-ML projects. We
classified the tasks into four categories: build, test, code analysis,
and deployment. The build category includes both build environ-
ment preparation and build configuration and execution commands.
All the ML projects we analyzed include configuration and com-
mands related to build environment preparation and execution
in their Travis configuration files. However, only 83.33% of all of
the ML projects we analyzed adopted testing in their CI process,
and surprisingly, only 65.85% of Non-ML projects adopted testing,
even though recommended testing practices are well established
for these projects [18]. For code analysis, which includes static
analysis, linting, and code coverage tools, overall adoption is lower
than build and test adoption. Another surprising result is that while
52.65% of ML projects adopted code analysis in their CI workflow,
only 25.61% of Non-ML projects adopted it. Concerning deploy-
ment, its overall adoption rate is only 24.6% by ML projects, even
though automatic deployment is considered a key component of
their workflows [4]. Meanwhile, only 14.02% of Non-ML projects
adopted automatic deployment. In addition, as will be illustrated
within the rest of this section, along with the higher adoption of
the different functions of CI by ML projects, there is a higher diver-
sity of tools being used by these projects to achieve those goals in
comparison to Non-ML projects. Comparing these results to those
found by Durieux et al. [30] when analysing Travis jobs of open
source software in-general, building and testing are also the most
common concerns of CI within OSS.
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Build Tasks: Travis CI allows the definition of build environ-
ment in its configuration. For example, language:python prepares
an environment for Python-based projects. Other properties can
be set, such as the Python version, OS, etc. With TraVanalyzer,
we extracted build configuration features. The 10 most frequently-
used Tavis CI configurations for ML projects are: language, python,
dist, sudo, env, cache, include, os, and apt. These are also the most
popular keywords for Non-ML build configuration. Developers can
also prepare their build environments by using bash commands to
download dependencies, set environment variables, etc. Based on
our approach detailed in Section 3.2.2, the 10 most frequently used
external commands for preparing ML projects’ build steps are: pip,
export, wget, apt-get, setup.py, conda, hash, cd, make, and curl. The top
10 commands used for Non-ML projects are similar, but instead of
hash and curl we find the git and npm commands.

Test Tasks: Testing confirms the correctness of the code be-
fore its integration. Since Travis CI does not provide built-in test
configuration, test cases are generally executed by external tools
and scripts invoked from the Travis CI configuration file. Based on
our analysis, pytest, activate, external shell scripts, external Python
scripts, nosetests, py.test, coverage, tox, unittest and, green are the 10
most frequently used tools and scripts used for ML projects’ testing.
Most projects invoke python unit test frameworks directly, but
some projects invoke external scripts to execute their tests. No us-
age of ML-specific testing frameworks was noted. The same list was
found for Non-ML projects, substituting green with the make_test

command.
Code Analysis Tasks: Some ML projects use code analyzers for

code quality and code style checking. These analyzers are generally
configured through the Travis CI configuration file to ensure contin-
uous code quality checking. coveralls, codecov, flake8, coverage, pylint,
bandit, mypy, autopep8, python-codacy-coverage, and black are the 10most
frequently used code analysis tools and commands. Most of these
are code coverage analyzers, but some are used for code style check-
ing and other types of static analysis, such as bandit, a tool for check-
ing security vulnerabilities of Python code. The first 5 tools were
also among the most frequent Non-ML tools for code analysis, how-
ever,ninja,pep8,pyflakes,codeclimate-test-reporter,luacheckwere the other
5 most-frequently-used coverage tools.

Deployment Tasks:Most CI services including Travis CI pro-
vide built-in support for deployment automation. Developers can
also invoke external tools such as Docker [13] to automate deploy-
ment. Based on our analysis, provider:pypi, docker, provider:pages [23],
provider:script, external shell script,provider:releases [23], twine,
provider: pages:git, doctr, and provider:awsmake up the top 10 providers
and tools used for deployment. Meanwhile, the only deployment
tool we found was beind used by Non-ML projects was docker

5.3 CI Problem Frequency and Taxonomy
Research Question 3: How often and Why do CI builds
break in ML projects?
Figure 6 shows the average percentages of the different types of

build-outcomes per project within our Depth Corpus of projects.
While ML projects seem to have a higher average rate of passing
builds in comparison to Non-ML projects, it’s important to also
note the higher internal variability in terms of build-outcomes
shown by the Non-ML projects within our Depth Corpus, when

Figure 6: Build status average percentages

comparing their quartiles to those of ML projects. The results for
Non-ML comparison set are surprising, especially when comparing
our findings to Beller et al.’s [27] findings regarding open-source
software, where an average of 82.4% of the builds for Java projects
and an average of 72.7% of the builds for Ruby projects are passed,
but it’s important to note that our comparison set is composed of
Python-based projects. Delving deeper into the different factors
behind build breakage, we chose to analyze the logs corresponding
to the failed jobs and errored jobs which compose the non-duplicate
broken builds of the projects within our Depth Corpus, that we
identified using the process detailed in Section 3.2.3. Gallaba et
al. [35] showed that logs from Travis CI are an imperfect source
of information since they can be incomplete, malformed, or not
present within the Travis CI server. Indeed, we encountered prob-
lems obtaining the failure logs corresponding to the failed jobs we
specified. For ML projects, this totaled 45590 jobs, 13.87% out of
which were either empty or not found on Travis CI’s server. From
the 35965 obtained job failure logs, we achieved a 91.59% saturation
rate of detecting at least one job failure type. For Non-ML projects,
we succeeded at obtaining 7153 logs pertaining to the job failures
we identified, on which we obtained a saturation rate of 91.15%,
and only 11 logs were unobtainable. Moving on to error logs, We
also attempted to download 15748 of the errored jobs selected from
the jobs of ML projects. 10.33% of them were empty or not found on
the Travis server. We achieved a 95.05% saturation rate of detecting
the error type of the 14121 job error logs we obtained. For Non-ML
projects, we attempted to download 4737 error logs only 1 of which
were empty or not found, and we achieved a saturation rate of
96.16% on classifying the error types.

Description of Error Taxonomy:Moving on to the results we
obtained, specifically the error taxonomy, the categories of the job
errors which we determined are:
Script Error: in 306 jobs of ML projects and 0 jobs of Non-ML
projects, constituting respectively 2.17% and 0%. They contain one
or more errors within the shell script being executed. For example,
an error occurs during copying or deleting a specific item or trying
to execute a command that’s not available.
Dependency Install problem: in 9989 jobs of ML projects and
3369 jobs of Non-ML projects, constituting respectively 70.74% and
73.96%. They contain problems directly related to the installation of
dependencies. For example, if the package manager does not find a
package, or there’s a problem cloning a git repository required by
the project.
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Travis CI Error: in 2728 jobs of ML projects and 1157 jobs of Non-
ML projects, constituting respectively 19.32% and 25.40%. They
contain errors specific to the CI environment. In the case of Travis
CI, logs exceeding the maximum size are an example of such errors.
Install phase misuse: in 2732 jobs of ML projects and 864 jobs
of Non-ML projects, constituting respectively 19.35% and 18.97%.
They contain the usage of the install phases for purposes other
than installing dependencies. For example, running Testing, Code
analysis, Deployment, or other processes within this phase.

Interpretation of Error Taxonomy results: It is evident that
Dependency Install problems are the most common type of prob-
lems within the install phase, since they are detected within 70.74%
and 73.96% of ML and Non-ML job errors. In fact, all the job error
categories we identified, except for the install phase misuse cate-
gory, are linked directly or indirectly to issues that can occur during
dependency installation. This is unsurprising as the main goal of
the install phase of a Travis job is to install the dependencies
needed in order to run the configured scripts for the script phase
correctly. It’s important to note that an errored job can be linked
to one or more of the issues within the taxonomy, hence a job can
belong to one or more error categories. The frequency of job errors
confirms that some of the approaches that developers use to install
their dependencies, such as cloning from git or installing a specific
version from package managers, are not 100% reliable. A git reposi-
tory may change location or be removed, and a specific version of a
tool may be removed from the package manager. Similar to Durieux
et al.’s work [31] on traditional software, we found git cloning for
dependency installation is a problem-causing practice, with 1065
jobs linked to ML projects failing due to a git-related error. While CI
Tool errors may be due to limitations with Travis itself, the Install
phase misuse being present in 19.35% of ML errored jobs and 18.97%
of Non-ML errored jobs is concerning, as it possibly indicates a
disregard of developers for Travis conventions, which can make
diagnosing and resolving subsequent issues harder. These findings
are similar to those of Gallaba et al.[36] concerning the prevalence
of misuse of Travis files in open-source software.

Overall, the different job error categories occur with similar
percentages in our ML set of projects as well as our Non-ML com-
parison set. It’s important to note however that script errors as well
as install phase misuses are present within a larger percentage of
ML job errors than Non-ML ones, but Non-ML job errors are more
likely to be related to Dependency Install problems and Travis CI
related errors than ML job errors. Our findings align with those of
Pinto et al. [46] concerning CI build breakages for traditional OSS.
Indeed, they also found that issues related to dependency manage-
ment were common reasons behind build errors. Furthermore, other
works such as those of Sulír & Porubän [50], Tufano et al. [51] and
Seo at al. [49] who respectively estimated that dependency-related
issues accounted for 39% , 58% , and 65% of OSS build breakages.

Description of Failure Taxonomy: Following the install
phase, the script phase which involves multiple CI processes is ex-
ecuted. A failed job may belong to 1 or more of the main categories
or sub-categories. The main types of failures are:
Script Failure: This failure is the result of an error during the
execution of the shell script or the python script as it attempts to
execute tasks related to preparing the environment for CI processes
and execute each one of them. This failure’s sub-types are:

➯Dependency Install Problems: this type of failure is encountered
when Travis encounters a problem while trying to acquire and
install a certain dependency. This is a sign of misuse of the script
phase, as the best practices recommend that all dependencies be
installed during the install phase of a Travis job [36].

➯Resource Not Found: If the script tries to access a module, file,
or program during its execution (outside of the other CI processes)
and is unable to find it, this type of error occurs.

➯Other Commands Failure: A general command failure resulting
in the failure of the execution of a command, which in turn may
stop the execution of the entire script or the execution of a specific
CI task.
Test Failure: One or more tests ran correctly, but identified prob-
lems within the functional code being tested. The functional code
needs to be modified to resolve this problem. Its sub-types are:

➯Assertion Exception: An exception occurs when an assertion fails
within a test execution. This exception occurs when the code fails
to establish the functional requirements specified by the developer
and is indicative of good test-writing practices being followed. A
sub-type of this exception is the ML-specific Assertion, which
indicates that an exception specific to the context of ML projects has
occurred, such as the following example where themodel prediction
result does not meet the accuracy threshold.

1 Example : FAIL : t e s t _ r e c a l c u l a t e _ u s e r ( t e s t s . a l s _ t e s t .
↩→ ALSTest )

2 As s e r t i o nE r r o r : 1 . 0 != 0 . 0 w i th in 0 . 0 0 0 1 d e l t a
3

➯Other Exception: This type of exception occurs when an excep-
tion unforeseen by the test occurs. It indicates that the test did not
account for this specific type of failure, and thus is not following
the best practices of test-writing [18].
Test Error: One or more tests did not run correctly, due to problems
within the test build up or tear down, or other processes related to
preparing the environment to execute a test. Its sub-types are:

➯Error During Test Collection: This indicates an error occurred
while the testing framework was attempting to collect the tests
across the different test-script files. This is usually due to an error
in the tests which prevents them from being loaded into Pytest,
such as missing modules or indentation errors within the test files.

➯Test Fixture Error: An error that occurs during the execution
of a pre-test or a post-test method, also known as fixtures, due to
a programmatic problem during the execution of these methods
such as a resource not being found. An ML-specific sub-type of this
exception is the CUDA Problems, which indicates an exception
related to the CUDA ML framework, and the other one is ML
Module Not found, which specifies that the test fixture was unable
to import a module generally associated with ML projects such as
Tensorflow.

1 Example :
2 Could not l o ad dynamic l i b r a r y ' l i b c u d a . so . 1 ' ; d l e r r o r :

↩→ l i b c u d a . so . 1 : cannot open shared o b j e c t f i l e : No such
↩→ f i l e or d i r e c t o r y

3 ➯Test Environment Problem: This indicates a problem linked to
the testing environment was found by the testing framework. For
example, it occurs when certain environment variables or depen-
dencies that were expected by the testing framework were not
found, or the testing framework was unable to find or create the
testing environment.

8



Figure 7: Job Fail Taxonomy. We show the count of Failed ML and Non-ML jobs of each sub-type in each block, along with the
relative percentage of failed jobs of each sub-type in relation to its direct super-type

1 Example :
2 $ tox
3 ERROR : unknown environment ' vu l t u r e '
4 Code Analysis Error: A failure during the process of Code Analy-
sis or caused by its result. For example, if an unexpected exception
occurs during the code coverage phase, or if severe code formatting
issues are reported, this type of error occurs. Its sub-types are:

➯Code Coverage: This type of failure occurs when the testing
coverage does not meet the minimum criteria set by the developer.

1 Example :
2 FAIL Requ i r ed t e s t cove rage o f 100% not reached
3 ➯Linting: This type of failure occurs when the coding practices
of the software do not conform with the conventions set by the
developer.

➯Other Code Analysis Fail: this occurs when an exception is
thrown during a code analysis process. In general, it’s due to an
unexpected exception during the process of Code Coverage or
Linting.
Deployment Error: This error occurs when a problem is encoun-
tered when the CI process attempts to deploy artifacts to a certain
destination, for example, due to connection or authentication is-
sues. The reason behind the low number of deployment-related job
failures is the fact that the failure of the deployment phase built
into Travis does not affect the build outcome status. Hence even
if a deployment fails, if the job has not encountered any problems
beforehand, it will still be considered passed.
Travis Failure: This error occurs due to problems related to the
CI tool being used within a project. For instance, in the context of
Travis, this could be a security error related to certificates within
the Travis container, the container running out of memory, etc. Its
sub-types are:

➯Security Error : This error occurs when the Travis instance faces
a problem related to the verification of the signatures of certain
resources, such as a package manager.

➯Out of Memory Error : This error occurs when the Travis CI in-
stance runs out of memory and can no longer load needed resources
into its memory.

➯Incomplete Log: This type of error occurs when the Travis Log
is unexpectedly incomplete (for example, stopping in the middle of
an output line). This is due to a known issue with Travis CI [2].Interpretation of Failure Taxonomy results: While a job
may fail for multiple reasons, it’s clear that most of the job failures
of ML projects are linked to testing. Focusing on test failures, 4817
jobs of ML projects, 25.4% of the reported failures, were a result of
an assertion exception, thus 74.6% of the reported test failures did
not follow the best practices of testing for the Python language [18].
Furthermore, only 26.4% of the test failures of ML projects which

followed these practices were ML-specific, such as failing to meet
accuracy criteria, indicating that the majority of the tests performed
were not necessarily ML-specific. Regarding test errors, the second
most common failure reason, 88.5% of them were due to program-
matic problems related to test collection or test fixtures, which are
problems linked to the coding of the tests themselves and to their
frameworks’ configuration. Comparing these results with those of
Non-ML projects, it’s clear that ML projects have different frequen-
cies of job failure types. One surprising results is that ML projects
are better at following testing practices than Non-ML projects, since
only 7.2% of the latter’s failures followed the recommended prac-
tices, especially considering their relative novelty [37]. Focusing
on build failures in OSS in general, Pinto et al. [46] found similar
build failure reasons as we did, ranging from inadequate testing to
missing edge cases, when analyzing build breakages within OSS via
interviews. Vassallo’s work [53] illustrates a similar picture for both
open source and Industrial Java software in the context of build
failures. Beller et al.’s work [27] illustrated that most build failures
are due to failed tests, where 70.89% of Java build failures and 67.13%
of Ruby build failures were due to failed Tests. In comparison, 48.3%
ML build failures were due to Test failures. The similarities between
OSS job failures, our comparison set of Non-ML job failures, and
ML build failures confirm that the same problems that affect CI
in OSS also affect CI in ML projects, with some variance in fre-
quency. For example, static analysis failures were present in 17.9%
of ML projects, but only affected 4.2% of builds of OSS in Vasallo’s
results [53], and 2.1% of the job failures of our Non-ML set.

None of the test failures or test errors we detected through our
semi-automatic log analysis or the manual methods we used in con-
structing it revealed the usage of ML-specific testing frameworks
or tools, even though a few of these tools have been introduced,
such as that by Karlaš et al. [40], or Amazon [5], or the usage of
recommended practices [40], such as changing the test set with
different builds to avoid the overfitting of models. This indicates
that even though ML-specific tools and practices were introduced
to the software engineering process, their adoption is still lagging.
6 IMPLICATIONS
For Researchers. First, while CI in ML projects has not received
much attention from the research community, it’s adopted by up
to 37.22% of ML projects, showcasing its importance as a sub-
ject of study. We provide researchers with a set of CI-using ML
projects [26], in order to guide their work in developing and adjust-
ing CI servers and tools for ML projects. Second, Travis CI is the
best source of information regarding CI practices of ML projects,
and based on our study, there is no evidence of the widespread adop-
tion of CI platforms specifically designed for ML projects. Thus,
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TraVanalyzer [26] is a great tool to further investigate CI prac-
tices in ML projects and can be easily extended to support other
types of Travis-using projects, especially since we were able to
successfully use it in our set of Non-ML projects. Third, we found
some of the most frequent CI problems of ML projects were related
to test failures, test errors, and code analysis failures. Our Failure
taxonomy and corresponding log analyzer can help with the au-
tomatic detection and debugging of these problems and guide the
development of Travis CI configuration repair tools. For ML De-
velopers. While adopting a CI tool is a step in the right direction,
simply building the software with it is insufficient. Testing is a basic
tenant of Continuous integration [1], and code analysis procedures,
especially code coverage, are highly recommended. ML projects’
developers should invest in implementing these processes in their
CI workflows and adapting them to the context of ML projects and
that of their project. For example, during our manual log-analysis
step for the construction of our CI Log analyzer, we found that
some projects are executing their tests on the same test set in ev-
ery build, increasing their risk of ML model over-fitting. To avoid
this problem, ML projects are recommended to vary their test sets
frequently [40]. Another example is that some ML projects had job
failures due to a restrictive 100% code coverage requirement, which
can be harder to achieve as the code-base grows. Relaxing this re-
quirement or monitoring CI status frequently can help minimize
unnecessary disruptions.

7 RELATEDWORK
Hilton et al.’s work [39] contains one of the most exhaustive CI
adoption estimates for open-source projects on GitHub, as it con-
sidered a larger amount of open-source CI tools and projects than
many other works examining this issue [27, 38, 52]. When it comes
to CI goals, Durieux et al.’s [30] work is a good indicator of the
tasks CI in OSS performs, It classified the tasks being performed by
Travis CI into categories ranging from testing to communication.
Moving on to CI problems, Gallaba &McIntosh [36] did an excellent
job at analyzing a set of .travis.yml files, extracting configuration
anti-patterns from them Focusing more on Travis in action, Beller
et al.’s [27] work analyzes Travis CI jobs with problems resultant
from testing and presents important information about their fre-
quency per language. Focusing also on the testing aspect of CI,
Karlaš et al. [40] outline a few problems concerning CI tool-support
for ML projects and discuss some of the problems that using the CI
tools’ traditional testing practices may engender in regards to an
ML model’s accuracy.

What distinguishes our work from these is scope: it is one of
the few that specifically focus on CI within ML projects in practice,
as well as analyzing CI in Non-ML in Python-based projects as a
baseline for contextualization. Furthermore, to estimate CI adoption
within ML projects, we apply a triangulation-based approach on
more recent data, rather than the API-only approach that Hilton et
al. [39] employ, which may give false positives in case a project is
no longer using a CI service. Concerning the goals of CI, Durieux et
al’s work’s [30] granularity with its focus on jobs may be skewing
the results in the direction of the CI tasks being performed by more
active projects that generate more builds, and thus more jobs, or
projects which are configured to run multiple jobs in different envi-
ronments, thus artificially increasing the count of the tasks they are

trying to perform. Our work attempts to investigate the multitude
of CI problems ML projects experience in practice, ranging from
dependency installation problems to deployment errors.
8 THREATS TO VALIDITY
The major threat to this study’s internal validity is the correct-
ness of the classification of the ML projects dataset. To reduce this
threat, we have manually inspected the breadth corpus to ensure
that the studied projects are actual software projects, not study
guides or toy projects, and that they are in fact using ML. Moreover,
the Travis CI AST-based task analyzer and CI log analyzer devel-
oped for automatic analysis can have internal threats to the correct
analysis of the tasks, failure types, and error types. To minimize
such threats, we also evaluated the correctness of these tools with
manually labeled data as described in Section 4. The major threat
to the study’s external validity is that we analyzed open-source
ML projects available on GitHub and mainly focused on Python-
based projects. So, the CI adoption by ML projects findings can
be different for closed-source projects and projects developed in
other programming languages. However, our findings are still sig-
nificant, since our dataset included large-scale ML projects such
as tensorflow/tensor2tensor, which was developed and open-
sourced by organizations like Google Brain. We also focused on
Python, the most popular programming language of ML projects.
9 CONCLUSION
In this work, we have shown that CI has been less widely adopted
among ML projects in comparison to Non-ML projects. We also
analyzed their different CI tasks, and extracted knowledge about
common problems of CI in ML projects. To the best of our knowl-
edge, this is the first work that has analyzed ML projects’ CI usage,
practices, and issues. Furthermore, we have also contextualized
these results by comparing them with similar Non-ML projects,
and summarized useful findings for researchers and ML develop-
ers to identify possible issues and improvement scopes for CI. For
future works, we plan to utilize the tools we developed for this
study, to develop a tool-chain for automatic fault localization and
repair of CI build breakages in ML projects, and to contribute this
tool-chain to the open-source community. The replication package
is accessible at [26].
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