
An Empirical Study on ML DevOps Adop-
tion Trends, Efforts, and Benefits Analysis

1st Dhia Elhaq Rzig
Computer and Information Science Department

University of Michigan - Dearborn
Dearborn, USA

dhiarzig@umich.edu

2nd Foyzul Hassan
Computer and Information Science Department

University of Michigan - Dearborn
Dearborn, USA

foyzul@umich.edu

3rd Marouane Kessentini
School Of Engineering And Computer Science

Oakland University
Rochester, USA

kessentini@oakland.edu

Abstract—Context: Machine Learning (ML), including Deep
Learning(DL), based systems, have become ubiquitous in today’s
solutions to many real-world problems. ML-based approaches
are being applied to solve complex problems such as autonomous
driving, recommendation systems, etc. Objective: To improve the
quality and deliverability of ML-based applications, the software
development community is adopting state-of-the-art DevOps
practices within them. However, we currently lack knowledge
about the DevOps adoption trends, maintenance efforts and ben-
efits among ML-based projects, and this work attempts to remedy
this knowledge-gap. Method: In this research work, we conducted
a large-scale empirical analysis on 4031 ML projects, including
1116 ML Tools and 2915 ML Applied projects to quantify DevOps
adoption, maintenance effort and benefits. To characterize the de-
velopment behaviors, we performed configuration-script analysis
and commit-change-analysis on DevOps configuration files. To
compare the characteristics of ML DevOps to those of traditional
software projects, we performed the same analysis on 4076 non-
ML projects. Results: Our analysis identified that ML projects,
more specifically ML-Applied projects, have a slower, lower,
and less efficient adoption of DevOps tools in general. DevOps
configuration files in ML Applied projects tended to experience
more frequent changes than ML-Tool projects and were less likely
to occur in conjunction with build and bug fixes. It’s also evident
that adopting DevOps in ML projects correlates with an increase
in development productivity, code quality, and a decrease in bug
resolution time, especially in ML-Applied projects which have the
most to gain by adopting these tools. Conclusion: We identified
the characteristics and improvement scopes of ML DevOps, such
as the slower adoption of DevOps in certain ML projects, and the
need for automatic configuration synchronization tools for these
projects. We also identified the improvements the productivity
of ML teams and projects associated with DevOps adoption,
including better code quality, more frequent code sharing and
integration and faster issue resolution.

Index Terms—machine learning, DevOps

I. INTRODUCTION

Recently, Machine Learning (ML), including Deep Learn-
ing (DL), has become prevalent with many applications:
Alzheimer’s disease diagnosis [1], Blood glucose prediction
in diabetics [2], Autonomous-driving cars [3], Loan approval

prediction [4], etc. The Worldwide Developer Population and
Demographic Study 2019 [5] estimates that approximately
7 million developers have used ML in their development
activity, and expects another 9.5 million developers to use ML
in the next twelve months. Although ML-based approaches
are becoming widely adopted by the industry as well as
the research community, one major challenge remains: the
integration of ML components in complex production systems
and processes while maintaining their reliability and efficiency
in the context of continuously evolving ML projects.
To improve the software delivery process, a closer collabora-
tion between the development and operations teams, known
as DevOps [6] has become popular within the software engi-
neering community. DevOps is a modern software engineering
paradigm that brings changes to production processes with the
approach of automating the building, testing, code analysis and
deployment of software. A recent GitHub study [7] discovered
that highly-performing DevOps teams recover from downtime
96 times faster, have a 5 times lower failure rate, and a 46 times
more frequent deployment rate. While DevOps practices are
slowly becoming more common and standardized for tradi-
tional software products [8], the state of DevOps within ML-
based projects, the advantages, and the challenges it brings,
still require more study within the research community.
Recently, there have been many works focused on ML DevOps
support. MLFlow [9] and Amazon SageMaker [10] were
designed to improve the workflow of ML project development,
which involves the data collection, data preparation, model
definition and training, and results-testing [11]. Package man-
agers such as Spack [12] and EasyBuild [13] were conceived
to allow the automatic rebuilding of ML models. Container-
based technology such as Docker [14] and Kubernetes [15]
has proven apt for shareable models. Aguilar et al. [16]
proposed Ease.ml/CI for continuous integration (CI) and data
management within ML projects. Fursin et al. [17] proposed
CodeReef to perform benchmarking for ML projects and en-
able their reusable automation. However, the majority of these

tools are still premature, require an important development
effort, and can only be used in conjunction with specific ML
technologies or frameworks [17, 18, 19]. Prior research [17]
also identifies that workflows using these solutions are not
easy to put into practice. Moreover, very little is known about
ML projects’ DevOps adoption and the difficulty of main-
taining correctly functioning DevOps tools within them. This
motivates our large-scale study on DevOps tools’ adoption
within ML projects, their maintenance effort and goals, and
the benefits they bring.
In order to obtain more information about these aspects, we
defined the following research questions:

1) What are the current and historical adoption rates of
DevOps Tools for ML and Non-ML projects?

2) What are the maintenance efforts and goals associated
with DevOps tools across the different project categories
?

3) What are the advantages of adopting DevOps tools across
the different project categories?

In this empirical study, we conducted a large scale analysis on
4031 ML projects that we manually curated from the dataset
by Gonzalez et al. [20]. We also performed the same analysis
on the 4076 Non-ML projects from the same dataset [20] for
comparative purposes.
Our main contributions through this paper can be summarized
as follows:

• Characterization of the current and historical adoption of
DevOps tools within a subset of popular Open-source
ML projects. Indeed, we found that ML Tool projects,
which are general purpose projects meant for use by other
developers, had similar current and historical DevOps
tools’ adoption to Non-ML projects, while ML Applied
projects, which are specific-purpose projects meant for
use by other developers and end-users, had a lower and
slower DevOps tools adoption in comparison

• An empirical analysis of the development effort in regards
to employing DevOps tools for different types of ML
projects. We believe that more DevOps-related develop-
ment effort is invested within ML Tool projects than ML
Applied projects, and that the adoption of certain DevOps
tools within these project categories is linked to a larger
effort invested by their development teams.

• Characterization of the common goals behind the changes
in DevOps configuration files and their other accompa-
nying changes ML projects. We found that ML Tool
and Non-ML projects achieve more Bug fixes than ML
Applied projects. Both in ML Tool and Non-ML project,
this increase in bug fixes is correlated with their adoption
of DevOps tools such as Test and Code analysis tools,
while this correlation was not found within ML Applied
projects. A small percentage of DevOps-altering commits
were found to have Build fixes as a goal, and the ma-
jority of them were concerned with other miscellaneous
changes.

• An empirical analysis of the improvements in the devel-

opment process resulting from the usage of DevOps tools
within ML projects. Across all categories of projects, we
found that the adoption of one or more DevOps tools
was positively correlated with an increase in commit
frequency, merge frequency, code quality, and a reduction
of the average issue resolution duration.

The rest of this paper is organized as follows: We start
by discussing related works in Section II. After that, in
Section III, we discuss the methodology of our analysis, which
includes data set selection, DevOps tools classification, and
the methods of analysis we used to answer our Research
Questions. Section IV presents the results of the empirical
analysis within our study and Section V discusses the possible
implications of our study. Finally, we discuss the threats to
validity and our conclusion in Section VI and Section VII,
respectively.

II. RELATED WORK

As DevOps became a modern software engineering
paradigm, it received growing attention from the research
community [6, 21, 22, 23]. Luz et al. [24] compared dif-
ferent approaches of adopting DevOps and identified the
main concerns of DevOps. They believe that collaboration
is an important DevOps concern in addition to the more
common and equally important tool usage. However, this
work mainly focused on interview outcomes rather than an
empirical analysis of DevOps as adopted by the software
projects. Moving on to guidance on adopting DevOps, Leite
et al. [6] analyzed DevOps within general-purpose software
projects from a multitude of facets. They developed conceptual
maps that described DevOps and linked them to engineering
and management perspectives.

McIntosh et al. [25] analyzed Build files, a type of DevOps
configuration files, in order to estimate the effort invested by
developers to maintain functioning Build systems in 9 open-
source and 1 closed source projects. They found that the level
of correlation between source files and build files is linked to
a project’s programming languages. However, their work only
covered a limited set of C and Java projects and a handful
of build tools, such as Make and ANT. This means that their
findings may not apply to projects with other programming
languages and other Build and DevOps tools.

However, none of these aforementioned works focus specif-
ically on ML projects or considered them as a specific project-
category. We consider this an oversight due to the fundamental
differences between ML and Non-ML software projects. While
Non-ML projects are given specific solutions in the form of
an algorithm designed by their developers to solve a specific
problem or set of problems, ML projects are designed to come
up with their own solutions, which may be unknown to these
projects developers. Indeed, ML projects attempt to solve a
problem by analyzing data, testing their findings, evaluating
their results, and iterating on these phases. Furthermore, they
require new development processes and practices such as
data engineering and model management [11, 26, 27], fol-
low different collaboration strategies between their collabora-

tors [20, 28], and may require different approaches to existing
software development processes in comparison to traditional
software, such as the example of Non-ML software testing
being ineffective on ML projects [29].

Lwakatare et al. [11] outlined some of the problems teams
face while attempting to integrate ML workflows within
DevOps processes, such as the inadequacy of existing code
versioning tools for ML artifacts management, and proposed
alternative processes to employ DevOps in ML projects. Yet,
their work relied on existing literature and expert knowl-
edge when discussing DevOps adoption problems within ML
projects, and did not perform empirical analysis to validate
the actual factors behind ML projects’ success or failure at
adopting DevOps.

To analyze ML project development aspects, the work of
Gonzalez et al. [20] conducted a large-scale empirical study of
Open-source ML Tools (700) and Applications (4,524) hosted
on GitHub. For comparative purposes, they also analyzed
4,101 Non-ML projects. Their work provided insight into
collaboration and autonomy rates in development teams and
identified ML Applied projects as the most autonomous, Non-
ML projects as less autonomous, and ML Tool projects as
the least autonomous. However, we uncovered problems with
their data-set in regards to the selection and classification of
ML projects. Furthermore, their work is more interested in
analyzing development practices and collaboration aspects of
the projects rather than analyzing their DevOps adoption and
DevOps practices.

Focusing more on the intersection of DevOps and ML
projects, Karlaš et al. [29] discussed the shortcomings and the
lack of support of existing CI tools of ML projects in practice.
Their work proposed implementation details that attempted to
solidify and build on existing theoretical concepts concerning
CI systems for ML projects. However, their work did not
consider other aspects of DevOps processes such as Code
Analyzers, Build systems, Deployment Automation, etc.

In contrast to existing works, our goal within this paper is
to analyze the adoption rates and trends of all DevOps com-
ponents such as Code Analyzers, Build systems, Continuous
Integration systems, etc., within ML projects, to characterize
their associated maintenance efforts, goals, as well as the
advantages they bring to the projects that adopt them.

III. METHODOLOGY

In this section, we discuss the different steps of our analysis
which includes: Data set selection, performed through a mix
of automatic and manual steps, DevOps tool classification,
performed via a study of existing research works around the
types of these tools, and our methods of analysis, which relied
on different phases of exploration and multi-pronged analyses
to empower us to answer our different research questions.
A. Data Set Collection

For this work, our goal was to analyze DevOps tools’ adop-
tion within a set of active and currently developed Machine
Learning (ML) software projects, referred to as ML projects,
and a comparison set of Software Projects that do not use ML,

referred to as Non-ML projects. However, preparing a data-
set of ML projects and Non-ML projects is effort-intensive,
and not the goal of this work. Initially, we opted for a recent
dataset proposed by Gonzalez et al. [20] for our analysis.
This dataset was supposed to contain 5224 ML projects and
4101 non-ML projects for comparative purposes. However,
we found several problems with it such as the inclusion of
toy projects, learning guides and other types of projects that
were supposedly manually removed from it, as well as the
misclassification between the two subsets of ML projects. To
resolve this problem, two authors re-curated the ML projects
by reading their descriptions on their main GitHub page, and
any websites linked to by that page. The resulting new dataset
we used within this work contained:

1) 1116 ML Tool projects: frameworks and libraries such
as Tensorflow, which can be used by developers to solve
a variety of problems. These projects are generally only
usable via an API.

2) 2915 ML Applied projects: Applications and libraries
that use ML components or libraries from the ML Tool
projects, to solve a specific problem. FaceSwap is an ex-
ample of an application and Document-Classifier-LSTM
is an example of a library. These projects may offer a
combination of a UI and an API.

3) 4076 Non-ML projects: A comparison set of classic
software projects that don’t use ML. These projects may
offer a combination of a UI and an API.

In addition, we used the GitHub API [30] in order to
collect the following information about each project in our
set: Age In days, Number of Stars, Number of Forks, Team
size, Number of Pull Requests open, Number of Pull Requests
merged, Number of Pull Requests rejected, Number of Core
Pull Requests Open , Number of Core Pull Requests Merged,
Number of Core Pull Requests Rejected, and Number of Issues
open. The project properties with Core in their name refer to
those managed by core developers and other project insiders,
for example, Number of Core Pull Requests Open refers to
the Number of PRs opened by project insiders. Vasilescu et
al. [31] chose these data-points as representative characteristics
of each project and its activity, and their works’ validation by
the research community indicate the validity of their variable
selection.We especially note that the Age In days, Number
of Stars, Number of Forks, Team size, are used as numerical
estimators of the size of the projects in our work, similar to
other works [31, 32, 33]. We collected these project properties
to enrich the data-set and facilitate the statistical analyses
within this work such as ANCOVA [34, 35].

B. DevOps Tools Classification

DevOps has many competing definitions, consequentially,
there is no consensus on how to determine whether or not a
project is employing DevOps. Prior research [24, 36, 37, 38]
on DevOps and DevOps tools also identified the same chal-
lenge. To circumvent this problem, we used the adoption of
DevOps tools as an indicator of the adoption of DevOps, and
we focused on analyzing these tools and their usage within our

chosen project-set. DevOps tools are defined by Leite et al. [6]
as the tools pursuing human collaboration across different
departments, enabling continuous delivery, and maintaining
software reliability. We opted for this definition as it is similar
to those found within other research works concerning DevOps
and DevOps tools [39, 40, 41]. Initially, we considered the
list of DevOps tools determined by Leite et al. [6]. However,
since this list was formed by analyzing traditional software,
we wanted to expand the number of tools within our analysis
to avoid missing any DevOps tools that are more popular
with ML projects. To expand our list of DevOps tools to
consider within this work, we followed the method outlined
in Section III-C1, to discover new DevOps tools in-use within
our projects but not described within previous works. We
classified the different tools we found into 6 categories:

1) Build Tools: Responsible for generating packages meant
for deployment, also referred to as builds. They are also
generally responsible for generating other artifacts and
providing feedback to developers using only the source
code as input.

2) Continuous Integration (CI) Tools: Responsible for
the orchestration of several steps that ensure the devel-
opment pipeline and automation of development tasks
such as package generation, automated test execution,
and deployment to both development and production
environments.

3) Deployment Automation Tools: Make use of certain
outputs of the continuous delivery process. They are
employed in the deployment stages in order to allow
frequent and reliable deployment processes.

4) Monitoring and Logging Tools: Responsible for track-
ing non-functional properties, such as performance, avail-
ability, scalability, resilience, and reliability.

5) Test Tools: Validate the functionality of software, and
identify possible errors, or missing requirements.

6) Code Analysis Tools: Static code analyzers that perform
several operations, such as code coverage, static error
detection, etc.

The Code Analysis category was proposed by Yin & Filkov
et al. [42], and Leite et al. [6] coined the first 4 categories
and while they considered Test tools as a part of the Build
category, we opted to consider them as a separate category
due to the difference in their respective goals, as detailed
within the definitions above. We didn’t consider Source code
management tools in our analysis because the projects in our
dataset were all collected from GitHub. Furthermore, our
analysis in Section III-C1 did not uncover any ML-specific
tools. To further verify the absence of usage of these tools,
we performed an automatic search for the configuration files
of some ML-specific tools such as MLFlow [9], Amazon
SageMaker [10] and Spack [12], and we found no evidence
of their usage within the two categories of ML projects we
considered

C. Methods of Analysis

The overview of our analysis is illustrated in Figure 1.
1) Phase 1: File, Name and Import pattern collection:

DevOps configuration files are written in a variety of domain
specific languages (DSL). For example, the Maven build
specification is written in an XML format, while the Gradle
build specification is written in a Groovy-based DSL language.
On the other hand, Docker uses a DSL that can only be parsed
and recognized by the Docker tool. As a result, static program
analysis techniques developed for certain programming lan-
guages or DSLs might not be sufficient to detect a large pool
of DevOps tools. This lead us to use the configuration file
name and path patterns to detect DevOps configuration files.
We adapted this method from prior works which employed
this approach for IaC and Build artifact files [25, 43, 44].
But first, in order to establish the set of DevOps tools to
consider in this work, we considered the list of tools proposed
by Leite et al. [6] as a starting point. However, upon realizing
its limitations, as discussed within Section III-B, we performed
a semi-automatic classification of DevOps configuration files
on the top 1000 ML projects and 1000 Non-ML projects based
on their GitHub project popularity1. First, performed an auto-
matic classification of the files within the repositories of the
aforementioned projects using the GitHub Linguist tool [45].
Then, a co-author manually verified the resulting classification,
and extracted from it the possible DevOps configuration files
by ignoring files with known extensions or names, such as
source code and readme files. Libraries.io [46] was then
consulted to find the tools corresponding to these configu-
ration files and verify if they corresponded to DevOps tools.
Finally, these tools’ documentation were examined to extract
configuration file name and path patterns that correspond to
them. These patterns are then used within the phase described
in Section III-C2. However, no such patterns were found for
testing tools as they do not rely on specific configuration
files. To detect these tools, we identified the testing files
within the aforementioned repositories, using the name and
path pattern-based method proposed by Zhu et al. [47] Then,
the import or import-equivalent (e.g., include, using, etc.)
statements within these files were manually checked by 2 co-
authors and cross-referenced with the Libraries.io [46] dataset
to determine if the modules being imported were testing tools
and frameworks. These patterns are used within the phase
described in Section III-C2. Overall, we identified 93 DevOps
tools via this phase. Figure 2 presents a subset of the tools we
identified and processes we used to identify them during our
analysis, with a full list available at [48]

2) Phase 2: File System Analysis: Having extracted the
file name and path patterns for Build, Continuous Integration,
Deployment Automation, Code Analysis and Monitoring and
Logging Tools, import-equivalent statements of the Test tools,
we used these patterns to verify their adoption within a certain
repository. We considered the existence of a configuration file

1The project popularity criteria used was a combination of the number of
stars and number of watchers

Cleaned and

Cloned

Project set

GitHub Linguist

Analysis

poten al DevOps

config. files

Manual

Inspec!on

File Name

Analysis

RQ1: Current

DevOps Adop on

Rates

Commit Analysis

RQ1 : Historical

DevOps Adop on

Trends

RQ2: DevOps

Adop on

Effort and Change

Goals

RQ3: DevOps

Adop on

Advantages

Test tools

import Pa$ernsAutoma!c Test-

File Selec!on

poten al

Test files

DevOps Config.

File name and

path Pa$erns

Build file

Analysis

Test file

Analysis

DevOps

config. files

Phase 1: File, Name and Import pa$ern collec on

Phase 2: File-System-based analysis

Phase 3: Repository and Commit-based Analysis

Code Quality

Analysis

RQ3: DevOps

Adop on

Advantages

Performed on

Top 1000 ML

and Top 1000

Non-ML projects

Performed

on 8107

projects

Performed on

8107 projects

Performed on

6855 projects

Fig. 1: Overview of our Approach

DevOps

Tools

Build Tools

Code Analyzer

Tools

Deployment

Automa!on Tools

Monitoring

and Logging Tools

Con!nuous

Integra!on Tools

Test Tools

Ant

Make

Maven

Rake

Build.xml

makefile

pom.xml

Rakefile

#include<cppunit>

using XUnit

import org.assertj.*

import pytest

tes$hat

require 'spec_helper'

Pylint

Codacy

Flake8

Flow

.pylintrc

.codacy.yml

.flake8

.flowconfig

CPPUnit
C/C++

CPPUnit
C/C++

xUnit
C#

xUnit
C#

AssertJ
Java

AssertJ
Java

Pytest
Python

Pytest
Python

tes$hat
R

tes$hat
R

Rspec
Ruby

Rspec
Ruby

Ansible

Flyway

Puppet

Heroku

ansible.cfg

flyway.conf

*.pp

heroku.yml

AppVeyor

CircleCI

Travis CI

Azure Pipelines

Build.xml

makefile

pom.xml

/azure/piplines/*

Graylog

Nagios

Prometheus

Logstash

nxlog.conf

nagios.cfg

prometheus.yml

logstash.yml

import-like statement
ToolName

Prog. Language
ToolName

Prog. Language File/Path pa$ern

key

Iden!fied via File

System analysis

Iden!fied via

Build and

Test files

analysis

Iden!fied via

Build file and

File system

analysis

Iden!fied via Build file and

File system analysis

Iden!fied via Build file and

File system analysis

Iden!fied via Build file and

File system analysis

Fig. 2: Subset of DevOps tools, their categories, and their corresponding configuration file name patterns or import
statements used to detect their usage.

matching the file name and path patterns of a specific DevOps
tool as indicative of that tool’s usage within the project. For
example, a pom.xml file in the project repository indicates
that Maven is being used as a Build tool within that project
and a .travis.yml indicated that the project adopted Travis CI
for Continuous Integration. Using the GitPython [49], and
PyGitHub [30] libraries, we created a tool that allowed us to
access and clone the remote source codes of these projects into
a local file system. Then, we analyzed the files of each project

and attempted to match them with the aforementioned patterns
to detect if the tools corresponding to these patterns were
adopted within each project. For the specific case of testing
tools, we analyzed the test code files, detected per the method
specified by Zhu et al. [47], for the import statements specific
to the test file’s possible testing tools, which are language
specific. For example, if a test file has the .py extension,
it is identified as a Python file. It is then scanned for the
import statements of Python testing tools identified within Sec-

tion III-C1. For example, if the statement import pytest
is found, the project that contains the test file is assumed
to be using the PyTest tool. In a software system, a build
script is responsible for collecting the necessary dependencies,
thus analyzing build scripts can provide important information
regarding their usage within a project. For example, Fan et
al. [50] relied on build-script analysis to find dependency
related errors related to building projects. In addition to the
two previously described methods, we relied on the analysis of
build scripts and considered a project’s dependency on a tool
to be indicative of its use within it. For example, if a project
specified a dependency on Codecov within its Maven pom.xml
file, we considered the project to be using the Codecov tool.
We used this method to detect the usage of DevOps tools
of all categories. The categories of DevOps tools and the
methods we used to identify the tools of those categories, as
well as a subset of the DevOps tools we considered, and their
corresponding file name and path patterns or import patterns
are illustrated in Figure 2. To determine the different variables
that contribute to DevOps adoption within different project
categories, We performed an ANCOVA [35] analysis, a type
of GLM regression for models with categorical and continuous
variables, using DevOps adoption as a dependent variable and
the additional data we collected, detailed in Section III-A,
as covariates. This phase allowed us to answer part of RQ1
regarding the current adoption of DevOps of the different
project categories, the project’s properties linked to its DevOps
adoption, and the most popular DevOps tools of each type in
the different project categories we specified. We also used this
phase to extract the different DevOps configuration files used
within the different phases described in Section III-C3.

3) Phase 3: Repository and Commit-based Analysis:
Repositories and their commits contain valuable information
about a project’s development and maintenance efforts [51].
DevOps tools are meant to be configured and updated via
their configuration files, hence, commits affecting these files
contain insight into the usage trends and practices of DevOps
tools. We extracted the DevOps configuration files via the
steps discussed in Section III-C2. We performed our analysis
on the Main branch of the different repositories, using the
PyDriller [52] tool and Github GraphQL API [53] to obtain
additional data not stored in the Git repository, such as the
CI status following a commit. While Test files were analyzed
within Section III-C2 to extract information about a project’s
testing framework, which we considered a type of DevOps
tool, test files are not considered DevOps configurations files
within the scope of this analysis. This is because Test code
is very similar to source code and test file changes are highly
coupled with source-file changes [54, 55]. In contrast, DevOps
configuration files are used to configure the different DevOps
tools used within a project, such as Continuous Integration
tools.We used this commit-based analysis to answer RQ1
regarding DevOps historical adoption trends via analyzing our
projects’ commits, where we assumed the date of the first
commit within a project to be the date of its creation, and
the date of the addition of the first DevOps configuration file

within a project to be an indicator of when it adopted DevOps.
We also answered RQ2 using commit-based analysis via
the sub-phases detailed in Section III-C3a, Section III-C3b,
and RQ3 using commit-based analysis and repository-based
analysis via the sub-phase Section III-C3c.

a) Phase 3-a: DevOps Adoption Effort: To obtain a
better idea about the configuration and maintenance efforts
of DevOps tools, we analyzed the commits that modified one
or more DevOps configuration files. We calculated the Commit
Ratio metric, which is similar to the amount of commits
metric, used by a number of works to estimate activity within
a project [56], but adapted to the context of a specific type of
files, to estimate the portion of commits that affect DevOps
configuration files. This metric is defined as follows:

Commit Ratio:

CommitRatio =
NofCDevOps

NofC

NofCDevOps is the total number of commits that involved
DevOps configuration file(s) and NofC is the total number
of commits.

To estimate the size of an update per-file-type within a
project, We calculated the Average Normalized Code Churn
of Source and DevOps configuration files, a commonly used
metric [56] that was also previously used in the context of
build artifacts [25], and that is superior to other metrics such
as Lines of Code (LOC) [57]. This metric is defined as follows:

Average Normalized Code Churn:

AvgNormal.CodeCh.(Type, Project) =

∑n
i=1

NBFilesChanged(Type, Project)

NBFilesExist(Type, Project)

NbOfDevMonths

NbOfDevMonths is the number of development
months2. NBFilesChanged(Type, Project) is the
number of either Source code or DevOps configuration
files of that changed during a development period,
NBFilesExisted(Type, Project) is the number of files of
a certain type, source code file or DevOps configuration file,
that existed during a development period.

For each project category, we performed 2 ANCOVA [35]
analyses, using Commit Ratio as a dependent variable for the
first analysis and Normalized Code Churn for the second anal-
ysis, and using the covariates presented within Section III-A.
In total, this was 6 ANCOVA analyses. We also performed 2
ANOVA analyses to detect any statistical differences concern-
ing these metrics between the different project categories. We
used this sub-phase and its associated analyses and metrics to
partially answer RQ2 regarding DevOps adoption efforts.

b) Phase 3-b: DevOps Change Goals: While the Nor-
malized Code Churn and Commit Ratio metrics inform us on
the properties of DevOps configuration files changes, they do
not reveal the underlying causes of the changes occurring to
these DevOps configuration files. To approximate the change
goals of DevOps configuration files, we selected the projects
that adopted at least a Build and a CI tool, then analyzed their

2We considered a development month to be 30 days within this work

commits that affected their DevOps configuration file(s). We
analyzed commits from 851 ML Applied projects, 586 ML
Tool projects, and 1942 Non-ML projects. We classified the
commits’ main change goal between 4 different alternates:

• Bug Fix: A bug fix is done to remedy a programming
bug or error. However, identifying bug-fixing commits
in a Git commit-history is a challenging task [58]. To
identify this type of commit, we adopted the approach
proposed by Ray et al. by scanning commit messages for
the keywords (“error”,“bug”,“fix”,“issue”,“mistake”,“in-
correct”,“fault”,“defect”,“flaw”,“type”) [59].

• CI Build Fix: CI Build fix refers to code changes
that aim to fix integration failures such as compilation
failures, dependency issues, unit test failures, etc. that
are reported by CI systems, and also referred to as
Build Breakages. To detect these commits, we adopted
an approach proposed by Hassan & Wang et al. [60],
and that’s similar to the approach used by Hyunmin et
al. [61] to detect a build-failure resolution. Based on this
approach, if a commit changes the CI build status from
Build failure or Build error to Build success, we consider
the commit a CI-fixing commit. We used the GraphQL
Github API [53] to detect the CI build status.

• Bug and CI Fix: A commit that meets the criteria of a
Bug Fix commits and CI fix commit is considered to be
attempting to fix both types of problems.

• Other changes: We considered commits that contain
neither a bug fix nor a CI fix as commits with the main
goal of other miscellaneous changes. These commits may
add new functionality, refactor existing code, etc.

Finally, in order to make these measures project-specific,
we calculated the percentage of each of the aforementioned
commit types out of all the commits of a project.

For each project category, we performed an ANCOVA [35]
analysis, using the four goals, Bug and CI fix, Bug fix, CI fix,
and Other changes, as dependent variables for the analysis,
and using the same covariates as the ANCOVA analysis done
within Section III-C1 in addition to the adoption of different
DevOps Tool types, such as Build Tool Adoption, CI Tool
adoption, etc. In total, this was 3 ANCOVA analyses. We used
this sub-phase and its associated analyses to partially answer
RQ2 regarding DevOps change goals

c) Phase 3-c: DevOps Adoption Advantages: Having
gained an idea about the properties and goals of the changes
performed on DevOps configuration files, we wanted to de-
velop an understanding of the advantages associated with
adopting DevOps Tools. To achieve this, we used the metrics
of Commit Frequency, Merge Frequency, and Average Issue
duration, which also rely on commit-based analysis , and Code
Quality, through the widely-used tool SonarQube [62] which
relies on repository-based analysis.

DevOps encourages more code sharing via frequent com-
mits and merges, hence Average Commit Frequency and
Average Merging Commits Frequency are correlated diretctly
to is principles of DevOps. These two metrics are calculated
as follows:

Average Commit Frequency:

AverageCommitFrequency =
NBofCommits

NBofDevMonths

NBofCommits is the total number of commits within
a project and NBofDevMonths is the total number of
development months within a project.

Average Merging Commits Frequency:

AverageMergingCommitFrequency =
NBofMergingCommits

NBofDevMonths

NBofMergingCommits is the total number of merging
commits within a project and NBofDevMonths is the total
number of development months within a project.

A reduced issue duration is also an expected result of
adopting DevOps, since it is claimed to increase the speed and
productivity of teams in relation to resolving software issues,
making Average Issue Duration a good metric to evaluate this
claim. This metric is calculated as :

Average Issue Duration :

AvgIssueDuration(ProjectA) =

∑n
i=1 Duration(Issuei, P rojectA)

TotalNBIssues(ProjectA)

Duration(Issuei, P rojectA) is the duration of an issue i
for a project A, n TotalNBIssues(ProjectA) indicates the
number of issues for that project.

Finally, DevOps is associated with an improvement in the
quality of the development process, and possibly that of the
code-base as well. We used the Maintainability and Reliability
code quality metrics as generated by SonarQube to evaluate
the quality of the projects within our set.

Prior works [63, 64, 65] used similar metrics and tools to
analyze the effectiveness of adopting CI within a number of
projects, giving confidence to their effectiveness.

For each project category, we performed 4 ANCOVA [35]
analyses, using Average Commit Frequency as a dependent
variable for the first analysis, Average Merging Commits
Frequency for the second analysis, Average Issue Duration for
the third analysis, and Code Quality for the fourth analysis.
We used the same covariates as the ANCOVA analysis done
within Section III-C1. In total, this was 12 ANCOVA analyses.
We also performed 4 ANOVA analyses to detect any statistical
differences concerning these metrics between the different
project categories. We used this sub-phase and its associated
analyses to partially answer RQ3 regarding DevOps adoption
advantages.

IV. RESULTS

A. Adoption rates of DevOps Tools

Research Question 1: What are the current and
historical adoption rates of DevOps Tools for ML
and Non-ML projects?

Fig. 3: DevOps Tools Current Adoption Rates

1) DevOps’ current Adoption Rates: Adopting DevOps
tools and practices within software projects has numerous
advantages to the productivity of a development team
and the quality of their processes. Since their growth in
popularity, DevOps tools are progressively being embraced
by independent developers and companies alike. Following
our analysis, we were able to confirm this with the high
adoption rates of 63.30% for Non-ML projects, and 64.07%
for the ML Tool projects. However, ML Applied projects
have shown a lower adoption rate of only 40.41%. Focusing
on the different DevOps tools categories, ML Tool projects
generally had the highest adoption rates across the majority
of tool types, with Non-ML projects following as a close
second, and Applied projects trailing as the third.

To identify the factors behind adoption of DevOps, we per-
formed an ANCOVA [35] analysis, a type of GLM regression
for models with categorical and continuous variables, for each
project category. We used DevOps adoption as a dependent
variable and the additional data we collected concerning each
project, detailed in Section III-A, as covariates. The project-
specific data points were: Age In days, Number of Stars,
Number of Forks, Team size, Number of Pull Requests open,
Number of Pull Requests merged, Number of Pull Requests
rejected, Number of Core Pull Requests Open, Number of
Core Pull Requests Merged, Number of Core, Pull Requests
Rejected, and Number of Issues open.

Using the results of the ANCOVA analysis illustrated within
Table I, we found that for ML Applied projects, the most
important statistically-significant factors that contribute to De-
vOps adoption within them were the Age of a project and
its Team size. This is indicated via the Partial Eta Square
statistic which informs us which variables have the largest
effect on the dependent variable, which is a project’s adoption
of DevOps in our case. Hence, older and larger ML Applied
projects are more likely to adopt DevOps. Similar results were
found when performing ANCOVA on ML Applied projects
while considering as dependent variables each DevOps tool
category, except Analyzer and Test tools where only Team
size was a determining variable of their adoption of DevOps.

Source Sig. Partial Details
Eta
Squared

Intercept <.001 .007 Intercept of the model
Age In Days <.001 .027 A project’s Age
Team Size <.001 .008 A project’s team-size

Number of Pull requestsN_Pr_Merged <.001 .008 merged
Number of Pull requestsN_Pr_Core_Merged <.001 .006 by core developers merged

R Squared = .119 (Adjusted R Squared = .116)

TABLE I: ANCOVA analysis of DevOps adoption within
Applied projects (Only statistically significant† variables
are shown)

† Statistically significant variables have a Sig.(P-value) less than 0.05

No statistically significant contributor was determined behind
the adoption of monitoring and logging tools by ML Applied
projects, most likely due to their low adoption by this project
category.

Source Sig. Partial Details
Eta
Squared

Intercept <.001 .131 Intercept of the model
Age In Days <.001 .023 Age of the project
N_Stars .036 .004 Number of Stars of project
N_Forks .016 .006 Number of Forks of project

Number of pull requests openN_Pr_Open .020 .005 of project
R Squared = .096 (Adjusted R Squared = .087)

TABLE II: ANCOVA analysis of DevOps adoption within
Tool projects (Only statistically significant variables are
shown)

For ML Tool projects, as illustrated within Table II, Age
was statistically significant correlated to their DevOps adop-
tion. Furthermore, the Number of stars and Number of forks
also had a significant correlation to their DevOps adoption.
It’s important to note that while Team size was significantly
correlated to DevOps adoption of ML Applied projects, this
correlation was not found within Tool projects. Around 50%
of ML Tool projects before our re-categorization process were
backed by major organization such as Microsoft and IBM [20],
and after this process, and we estimate that 30% of these
projects are backed by such organizations. This makes all the
more surprising the lack of correlation between team-size and
DevOps adoption for ML Tool projects, especially considering
these organization are more likely to have larger resource
and to adopt best practices such as DevOps in comparison
to independent developers. It’s also important to note that ML
Tool projects show more variance within their team sizes than
their ML Applied counterparts, as illustrated within Figure 4,
signaling that a lack of correlation between Team size and
DevOps adoption is not due to limitations related to sample
size, but rather the properties of ML Tool projects. Focusing on
the different categories of DevOps tools, Age was also a key
variable in determining whether an ML Tool project adopts
Build, CI or Deployment tools, while surprisingly, Team size

was the key predictor of Code Analysis tools adoption. Finally,
no predictors of Monitoring tools’ adoption by ML Tools
projects was found.

0

10

20

30

40

50

60

ML Applied ML Tool NonML

Fig. 4: Variance of Team size (Outliers removed)

Source Sig. Partial Details
Eta
Squared

Intercept <.001 .106 Intercept of the model
Team Size .003 .002 Size of the project’s team
Age In Days .006 .002 Age of the project
N_Forks .010 .002 Number of Forks of projects

Number of Pull Requests openN_Pr_Open .951 .000 of project
R Squared = .060 (Adjusted R Squared = .057)

TABLE III: ANCOVA analysis of DevOps adoption within
Non-ML projects (Only statistically significant variables are
shown)

Considering Non-ML projects, it’s clear through Table III
that they show similar results regarding the factors contributing
to DevOps adoption to those of ML Tool projects. A Non-
ML project’s age, pull-request based development activity,
popularity as measured by its number of forks, and its team
size are significant contributing factors to its adoption of
DevOps. Focusing on the different categories of DevOps tools,
two or more of the aforementioned projects’ characteristics
were among the main predictors of the adoption of a specific
DevOps tools category, indicating no major difference between
the predictors of DevOps adoption in-general and the adoption
of a specific category of DevOps tools by Non-ML projects.

A summary of our findings is illustrated in Table IV. We
found that an ML Applied project’s age and team size are
more likely to affect its’ DevOps adoption more so than that
of a Tool or Non-ML project. Similar characteristics related
to a project’s size, popularity, as measured by its number of
stars and forks, and its reliance on PR-based development,
are the important factors that affect whether or not it adopts
DevOps, regardless of whether or not it’s an ML project.
One important outlier is that an ML Tool projects’ team
size does not affect its DevOps adoption outcome. Based
on observations by Karlaš et al. [29], Renggli et al. [16],
Lwakatare et al. [11, 66], Amershi et al. [67], and Arpteg
et al. [68], we attribute the lower adoption of DevOps by
ML Applied projects to the differences between traditional
software projects and ML projects, and a lack of DevOps

Category Most
important
variables
affecting
DevOps
adoption

Interpretation

ML Applied Age In
Days, Team
Size, N_Pr
_Merged,
N_Pr_Core
_Merged

An ML Applied projects’ DevOps
adoption is linked to its age, team size
and reliance on PR-based development
as measured through its number of pull
requests merged

ML Tool Age In
Days,
N_Stars,
N_Forks,
N_Pr_Open

An ML Tool projects’ DevOps adoption
is linked to its age, popularity as
measured with its number of stars and
forks, and its Number of PRs open

Non-ML Team Size,
Age In
Days,
N_Forks,
N_Pr
_Open

A Non-ML projects’ DevOps adoption
is linked to its team size, age, popularity
as measured with its number of forks
and reliance on PR-based development
as measured through its number of pull
requests open

TABLE IV: Summary of ANCOVA analyses results for
DevOps Adoption

tools that were specifically designed for small scale ML
projects.

2) Most popular DevOps tools: In addition to exploring
the adoption rates of DevOps tools and the factors affecting
their adoption, we were interested in exploring which tools
were currently popular across the different types of projects.
tables V to IX illustrate the adoption rates for the DevOps tools
that have at least 1% adoption rate by one or more categories
of projects. We believe knowing which tools are popular for
each project category can help guide future research regarding
DevOps practices within them. For example, research on Code
analysis within ML projects should focus on the Coverage and
Pylint tools since they are the most popular Code analysis tools
within them.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

7/6/2009 1/7/2011 7/10/2012 1/11/2014 7/15/2015 1/15/2017 7/19/2018 1/20/2020

ML Applied Project

ML Applied DevOps adop�on ML Tool DevOps Adop�on
ML Tool Projects Non ML Projects

Non ML Devops Adop�on

Fig. 5: Historical project amounts and their DevOps tools’
adoption (normalized to percentages)

3) DevOps’ historical Adoption Rates: We analyzed the
historical adoption trends of DevOps tools to get a better
understanding of the evolution of their adoption rates over
time. The results of our analysis are illustrated in Figure 5.

Tool Name Project Category Adoption Percentage
ML Applied 9.88%
ML Tool 18.91%setuptools
Non-ML 0.74%
ML Applied 0.41%
ML Tool 1.34%Rake
Non-ML 1.72%
ML Applied 1.30%
ML Tool 1.25%QMake
Non-ML 2.21%
ML Applied 2.78%
ML Tool 5.38%Maven
Non-ML 1.67%
ML Applied 16.78%
ML Tool 30.73%MakeFile
Non-ML 3.68%
ML Applied 2.81%
ML Tool 3.76%JUnit
Non-ML 1.64%
ML Applied 2.02%
ML Tool 2.06%Gradle
Non-ML 2.77%
ML Applied 2.06%
ML Tool 6.63%Clang
Non-ML 0.65%
ML Applied 1.72%
ML Tool 5.02%Ant
Non-ML 0.54%

TABLE V: Usage rates of Build Tools (Tools with 1% or
more usage rates)

Tool Name Project Category Adoption Percentage
ML Applied 2.02%
ML Tool 4.75%Pylint
Non-ML 0.17%
ML Applied 0.96%
ML Tool 1.88%Flow
Non-ML 0.39%
ML Applied 1.78%
ML Tool 3.32%Flake8
Non-ML 0.05
ML Applied 1.58%
ML Tool 1.34%ESLint
Non-ML 2.55%
ML Applied 3.50%
ML Tool 7.89%Coverage
Non-ML 0.29%
ML Applied 2.64%
ML Tool 5.38%Codecov
Non-ML 0.25%
ML Applied 0.48%
ML Tool 1.08%CodeClimate
Non-ML 0.27%
ML Applied 1.58%
ML Tool 6.00%Clang
Non-ML 0.37

TABLE VI: Usage rates of Code Analysis Tools (Tools
with 1% or more usage rates)

Tool Name Project Category Adoption Percentage
ML Applied 1.03%
ML Tool 2.78%testthat
Non-ML 0.12%
ML Applied 2.81%
ML Tool 6.45%Pytest
Non-ML 0.39%
ML Applied 1.34%
ML Tool 2.42%JUnit
Non-ML 2.04%
ML Applied 0.34%
ML Tool 1.08%Cassert
Non-ML 0.37%

TABLE VII: Usage rates of Test Tools (Tools with 1% or
more usage rates)

Tool Name Project Category Adoption Percentage
ML Applied 17.94%
ML Tool 33.24%Travis
Non-ML 10.30%
ML Applied 0.58%
ML Tool 1.97%Jenkins
Non-ML 0.05%
ML Applied 2.44%
ML Tool 6.09%AppVeyor
Non-ML 0.76%

TABLE VIII: Usage rates of Continuous Integration Tools (
Tools with 1% or more usage rates)

Tool Name Project Category Adoption Percentage
ML Applied 13.17%
ML Tool 15.59%Docker
Non-ML 1.67%
ML Applied 0.10%
ML Tool 0.36%Chef
Non-ML 0.64%

TABLE IX: Usage rates of Deployment Automation Tools (
Tools with 1% or more usage rates)

When analyzing the growth of Non-ML projects overall in
comparison to that of Non-ML projects with one or more
DevOps tools, it’s clear that they both have similar trends over
time, signaling a healthy adoption growth of DevOps among
this type of projects.

Focusing on ML project types, both ML Tool projects’
growth and ML Applied projects’ seen a near exponential
increase starting from 2017.The explosion in the projects’ total
amount can be attributed to the advances in ML fields and
gains in their popularity. Focusing on the amount of ML Tool
projects with DevOps tools, it shows similar growth trends as
the total number of the ML Tool projects. This similarity in
growth trends is also observed for Non-ML projects growth.
However, while ML Applied projects have seen a similar in
amount to ML Tool projects due to analogous reasons, their
DevOps adoption growth has stalled in comparison. DevOps
tools’ in ML Applied projects had a slower and lower adoption
rate overall in comparison to both Non-ML and ML Tool
projects, and we were able to partially link them to the
smaller team sizes of these projects in Section IV-A1 to their
lower DevOps adoption. Overall, these results indicate that the
current adoption rates are consistent with the historical rates

across project categories, and there are no abrupt changes of
DevOps adoption.

Finding 1: ML Tool projects and Non-ML projects
have significantly higher current and historical De-
vOps tools’ adoption rates than ML Applied projects.
This adoption is most influenced by a project’s age,
team-size or both factors, depending on the project’s
category.

B. DevOps Maintenance Efforts and Goals

Research Question 2: What are the maintenance ef-
forts and goals associated with DevOps tools across
the different categories of projects ?

Having determined the historical and current adoption rates,
we wanted to investigate the differences in the effort that devel-
opers are putting into maintaining their DevOps configuration
files and the correct functioning of DevOps tools within their
repositories, and to explore the different goals of updates to
DevOps configuration files.

Fig. 6: Commit Ratios of DevOps configuration files

1) Ratio of DevOps configuration files’ updates: We used
the Commit Ratio metric to estimate the share of updates
that affect DevOps tools out of all the updates that affect
a repository. As illustrated by Figure 6, Tool projects tend
to update their DevOps configuration files less overall, while
Applied and Non-ML projects had higher and similar ratios
of updates. The projects with the highest DevOps commits
ratio are generally those with the majority of their updates
affecting their Build, CI or Deployment automation files.
One such example is the ML Applied project ROSETTE-
API/ROSETTE-ELASTICSEARCH-PLUGIN, with 78.46% of its
commits modifying its Maven and Travis file. The majority of
these updates are comprised of version or dependency and
configuration changes for the project overall or its docker
image and the plug-ins it provides. Another example is the
CLARITYCAFE/IVY repo, which has frequent commits which
almost always change its Travis CI and Docker file. Upon
closer inspection, we identified that this project’s Docker and
Travis files are mostly changed to fix CI and Deployment
problems. These examples and our statistical findings stand
in contrast with the concept of “write-once-and-forget-it”

for DevOps configuration files and indicate that they evolve
frequently for different aspects of software maintenance.

Source Sig. Partial Details
Eta
Squared

Intercept <.001 .022 Intercept of the model
CI .006 .007 Adoption of CI tool(s)
Build * CI Adoption of Build, CI
* Analyzer .007 .007 and CA tool(s)
Build * Deployment Adoption of Build, DA
* Test .024 .005 and Test tool(s)
Build * Analyzer Adoption of Build, Code
* Test .035 .004 Analysis and Test tool(s)
CI * Deployment Adoption of CI, DA
* Analyzer .045 .004 and CA tool(s)
CI * Deployment Adoption of CI, DA
* Analyzer * Test .045 .004 , CA and Test tool(s)

R Squared = .098 (Adjusted R Squared = .063)

TABLE X: ANCOVA analysis of Commit Ratio for Applied
projects (Only statistically significant variables are shown)

To further investigate whether these project-specific trends
are a widespread phenomenon, we performed, the ANCOVA
analysis illustrated in Table X, we found that CI adoption,
and the adoption of CI, Build and Test tools at the same time
to be among the strongest factors leading to a higher commit
ratio in Applied projects.

However, after performing the same analysis on the other
two project categories, we found no statistically significant
link between the adoption of specific DevOps tool categories
and the commit ratio in ML Tool and Non-ML projects. This
allows us to deduce that specific categories of DevOps tools,
such as CI, Build and Testing tools in ML Applied projects
need more frequent updates in comparison to other types of
tools. Yet, ML Tool and Non-ML projects do not show this
correlation. A summary of our ANCOVA analyses is found
within Table XI

Category Most important
variables affecting
DevOps churn

Interpretation

ML Applied CI, Build * CI *
Analyzer, Build *
Deployment * Test,
Build * Analyzer *
Test, CI * Deployment
* Analyzer, CI *
Deployment * Analyzer
* Test

An ML Applied projects’
adoption of certain
DevOps tool categories
or a combination of these
categories is linked to an
increase in its DevOps
configuration files commit-
ratio

ML Tool None An ML Tool projects’
DevOps configuration files
commit-ratio is not linked
to its adoption of a tool of a
certain DevOps category.

Non-ML None A Non-ML projects’
DevOps configuration files
commit-ratio is not linked
to its adoption of a tool of a
certain DevOps category.

TABLE XI: Summary of ANCOVA analyses results for
DevOps Commit-ratio

Finally, we were able verify the statistical dissimilarity
between the different projects categories via the one-way

ANOVA test [69], a test developed to allow the comparison
of the means of three or more different groups based on one
property. The p-value obtained was 0.032 implying significant
statistical difference between the three groups regarding their
Commit Ratios.

0.00

0.01

0.07

0.04

0.07

0.12

0.03

0.08

0.14

0.06

0.10

0.16

0.05

0.13

0.25

0.08

0.12

0.17

Fig. 7: Average Normalized Code Churn(Outliers removed
with IQR [70])

2) DevOps Coding Efforts: To estimate the effort that
developers put into DevOps configuration files in comparison
to Source files between different commits, we used the
Average Normalized Code Churn metric. As illustrated by
the results in Figure 7, a comparatively higher relative churn
of DevOps configuration files is noted in ML Tool projects
in comparison to ML Applied projects. This is made clearer
with the higher quartiles and median values of this metric
for ML Tool DevOps churn in comparison to those of ML
Applied projects. Non-ML projects had a bigger churn overall
on both file-types, yet its DevOps churn shows a more even
distribution across its value range, reflecting more diverse
DevOps maintenance practices within these projects. With a
more detailed analysis, we identified that both Source and
DevOps churn values are generally high at the beginning of
a project’s history, matching the intuition regarding changes
being done to a large number of files as the project’s initial
code and configuration are being defined across a variety of
them. These rates tended to quickly drop in value during the
following months. Regarding DevOps Churn specifically, it
tended to increase across all project categories whenever a
new DevOps tool was added to a project, and it can take
several development periods to drop again. This signifies a
possible adoption barrier due to the time and effort required
to establish and configure correctly working DevOps tools in
a project.

Focusing on some interesting cases, the ML Applied project
with the highest Avg. Normalized DevOps Churn and Source
code churn was the INDIX/WHATTHELANG project with the
respective values of 1.0 and 0.43. This project provides a
language prediction application usable via a CLI or an API.
It employs Travis CI For continuous integration. Within this
repository, 23 total commits over the period of one month
were made. The only DevOps file within this project was a

.travis.yml file, and it was updated more than once during that
month, but not all of the source files were updated during this
period following their creation.

The ML Tool project with the highest Avg. Normal-
ized DevOps Churn and Source code churn was the
YINCHUANDONG/SENTIMENT-ANALYSIS project with values
of 1.0 and 0.2 respectively. It is a Deep Learning Workflow
for Sentiment Analysis, and the only DevOps tool it uses is
Docker for Deployment Automation. It also has a relatively
low activity with 36 commits over the duration of one month,
during which the Docker file was frequently updated. These
two specific cases aside, ML projects of both types had De-
vOps churn values close to their Source churns. This implies
that DevOps configuration files require development effort
similar to that of Source files, along with the accompanying
time and resource investments. Our intuition is confirmed
within the ANCOVA analyses of DevOps code churn across
the different project categories, which are illustrated and
discussed in the following paragraphs.

Source Sig. Partial Details
Eta
Squared

Intercept <.001 .022 Intercept of the model
Team Size <.001 .021 Project’s team size
Age In Days <.001 .011 Project’s age

Number of Pull requestsN_Pr_Merged .021 .005 merged
CI .031 .004 Adoption of CI tool(s)
Deployment * Analyzer Adoption of DA, CA and
* Test .032 .004 Test tool(s)
Build * Deployment Adoption of Build, DA,
* Analyzer * Test .037 .004 CA and Test tool(s)

Adoption of CA and TestAnalyzer * Test .041 .004 tool(s)
Number of Pull requestsN_Pr_Core_Merged .048 .004 by core developers merged

R Squared = .213 (Adjusted R Squared = .182)

TABLE XII: ANCOVA analysis of DevOps Code Churn for
Applied projects (Only statistically significant variables are
shown)

Focusing on ML Applied projects, the results of which are
illustrated in Table XII, we found that their adoption of a
DevOps tool, or a combination of tools, such as Build or CI
tools, is strongly correlated with an increase in their DevOps
churn. Furthermore, the varying effect size values (represented
by the Partial Eta Square) imply that different DevOps tools
have different effort-requirements, with CI Tools being the
ones that are most effort-intensive for ML Applied projects.

Moving on to ML Tool projects, the ANCOVA of which
is illustrated in Table XIII, we also found that their adoption
of one or more DevOps tools is correlated with an increase
in their DevOps churn. In their case, the adoption of Build,
Deployment Automation, Continuous Integration, and Code
Analysis tools at the same time had the largest effect size,
and thus the highest consequential increase in DevOps Churn.
This implies that an ML Tool project’s adoption of multiple
DevOps tools categories at the same time is more likely to
result in an increase of its DevOps configuration files churn

Source Sig. Partial Details
Eta
Squared

Age In Day <.001 .019 Age of the project
Intercept <.001 .018 Intercept of the model
Build * CI Adoption of Build, DA,
* Deployment * Analyzer <.001 .005 CI, and CA tools
CI .002 .004 Adoption of CI Tools
Build * CI .002 .004 Adoption of Build, CI,
* Analyzer and CA Tools

Adoption of DA and TestDeployment * Test .006 .003 tools
N_issues_Open .007 .003 Number of Issues open

Adoption of CI and CACI * Analyzer .020 .002 tools
Build * CI .021 .002 Adoption of Build, CI
* Deployment and DA tools

Adoption of BuildBuild * Test .042 .002 and Test tools

R Squared = .106 (Adjusted R Squared = .090)

TABLE XIII: ANCOVA analysis of DevOps Code Churn
for Tool projects (Only statistically significant variables are
shown)

and this increase is likely to be more substantial than that
resultant of the adoption of DevOps tools of one category.

Source Sig. Partial Details
Eta
Squared

Intercept <.001 .082 Intercept of the model
Build * Analyzer Adoption of Build, CA
* Test .009 .011 and Test tools
Age In Days .010 .011 Age of the project
Build .031 .008 Adoption of Build Tools
N_Pr_Open .040 .007 Number of Pull requests opened
Team Size .043 .007 Size of the project’s team
CI .049 .006 Adoption of CI Tools

R Squared = .148 (Adjusted R Squared = .091)

TABLE XIV: ANCOVA analysis of DevOps Code Churn for
Non-ML projects (Only statistically significant variables are
shown)

Finally, focusing on Non-ML projects’ ANCOVA, illus-
trated in Table XIV, we find similar results to those of ML Ap-
plied and ML Tool projects, establishing that the phenomena
of increased DevOps configuration files Churn is true across
project categories. It’s interesting to note that the adoption of
a different mix of DevOps categories, more specifically Build,
Code Analysis and Test tools, which is different from that of
ML Tool projects’, is the variable with the largest effect size
and hence the biggest effect on DevOps Churn of Non-ML
projects. It is especially interesting that Test tools are within
this group of category, as they do not rely on any specific
configuration file. As mentioned in Section III-C3, we do not
consider Test files as DevOps configuration files.,

The summary of our ANCOVA analyses in relation to
DevOps churn is within Table XV. Notably, across all project
categories, the number of issues does not seem to affect
DevOps code churn, signaling a lack of correlation between
the reporting of issues within a project and the churn of
DevOps configuration files. Applying the one-way ANOVA

Category Most important
variables affecting
DevOps churn

Interpretation

ML Applied Team Size, Age In
Days, N_Pr_Merged,
CI, Deployment *
Analyzer * Test,
Build * Deployment
* Analyzer * Test,
Analyzer * Test,
N_Pr_Core_Merged,

An ML Applied projects’
Team Size, Age, reliance
on PR-based development,
and its adoption of certain
DevOps tool categories or a
combination of these categories
are linked to an increase in
its DevOps configuration files
churn

ML Tool Build * CI *
Deployment *
Analyzer, Build *
CI * Analyzer ,
Deployment * Test,
N_Issues_Open, CI
* Analyzer, Build *
CI * Deployment,
Build * Test

An ML Tool projects’ DevOps
configuration files churn is not
linked to its adoption of certain
DevOps tool categories, and its
number of issues open.

Non-ML Build * Analyzer *
Test, Age In Days,
Build, N_Pr_Open,
Team Size, CI

A Non-ML projects’ DevOps
configuration files churn is
linked to its adoption of certain
DevOps tool categories, its
age, its reliance on PR-based
development, and its team size.

TABLE XV: Summary of ANCOVA analyses results for
DevOps Churn

test across the different categories, we obtain a p-value of
3.61e−18 for the Source Code Churn and 6.49e−18 for the
DevOps Code Churn, implying significant statistical difference
between the three groups of projects.

3) DevOps Change goals: After uncovering the efforts
invested by developers in DevOps configuration files, we
wanted to explore the goals developers were trying to achieve
by changing one or multiple DevOps configuration files. To
achieve this, we analyzed the different commits that affect
DevOps configuration files and determined the commits’ main
goals, within 1437 ML projects and 1942 Non-ML projects
which adopted Build and CI Tools, via a process detailed in
Section III-C3b. The results are illustrated in Figure 8.

In a typical development cycle, bugs and problems may be
detected directly by the developer through local unit testing,
or be reported externally by either customers or testers. In
a project that adopts CI tools, program bugs, test failures,
DevOps tools’ misconfigurations and other problems may be
detected and reported by the CI system.

Source Sig. Partial Details
Eta
Squared

CI * Deployment Adoption of CI, DA
* Analyzer .068` .004 and CA Tools
Intercept .087` .004 Intercept of the model
Build * CI .112` .003 Adoption of Build and CI Tools

R Squared = .059 (Adjusted R Squared = .007)

TABLE XVI: ANCOVA analysis of bug-fix commit goal
for Applied projects (` marks statistically non-significant
variables, table is shown for illustrative purposes)

0.00%

0.00%

0.00%

0.00%

1.06%0.00% 0.46%

0.00%

29.23%
0.00% 11.78%

0.00%
53.85%

7.14%

50.00%
0.00% 7.69%

58.33%
100.00%

30.77%
88.89% 100.00%

43.96%
100.00%90.91%

83.33%

M
L
 A

p
p

lie
d

M
L
 T

o
o

l
N

o
n

-M
L

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

50.00%50.00%
43.96%

50.00%

Build and Bug Fix

Only Build Fix

Only Bug Fix

Code Improvement

Fig. 8: Goals of DevOps-changing Commits (Outliers points
hidden, 3 quartile-values shown if different)

For ML Applied projects, the lower percentages of bug-
fixes shown in Figure 8 may imply that these projects are
experiencing less build breakages and bugs. But in reality, the
ANCOVA analysis for ML Applied projects in Table XVI
indicates that there is no correlation between the adoption
of Test and Code Analysis tools and a reduction in the
percentages of these fixes. This indicates that ML Applied
projects are not using these tools efficiently in order to remedy
the bugs that may arise in their code. In addition, we did
not find any correlation between team size or other covariates
considered and bug-fixes. This implies that this misuse of Test
and Code Analysis tools is present within the majority ML
Applied projects, regardless of a project’s properties.

Source Sig. Partial Details
Eta
Squared

Intercept <.001 .060 Intercept of the model
Build * Analyzer Adoption of Build, CA
* Test .016 .012 and Test tools

R Squared = .136 (Adjusted R Squared = .062)

TABLE XVII: ANCOVA analysis of bug-fix commit goal
for Tool projects (Only statistically significant variables are
shown)

Moving on to ML Tool projects, a clear correlation is found
between the adoption of Build, Code Analysis and Test tools
within a project and bug-fixing commits being performed
within it. Since the goals of Code Analysis and Test tools
is to allow developers to find bugs and issues with their code-
base, we interpret the increase of bug-fixing commits of ML
Tool projects that adopted them as a sign of efficient use of
these tools by these projects.

Concerning Non-ML projects, a correlation is found be-
tween the adoption of Build, CI, Code analysis, Test and
Deployment Automation tools within a project and bug-

Source Sig. Partial Details
Eta
Squared

Analyzer <.001 .006 Adoption of CA tool(s)
Intercept .005 .004 Intercept of the model
Deployment * Test .020 .003 Adoption of DA tool(s)
Build * CI .025 .003 Adoption of Build,CI tool(s)
Build * Analyzer .033 .003 Adoption of Build,CA tool(s)
Build * Test .047 .00 Adoption of Build, Test tool(s)

R Squared = .045 (Adjusted R Squared = .023)

TABLE XVIII: ANCOVA analysis of bug-fix commit goal
for Non-ML projects (Only statistically significant variables
are shown)

fixing commits being performed within it. Similar to ML
Tool projects, we interpret the increase of bug-fixing commits
of Non-ML projects that adopted the different categories of
DevOps tools, especially those designed to allow bug-detection
as a sign of efficient use of these tools by these projects.

Across all projects categories, no correlation between Build
fix percentage and Code Analysis tool adoption or any other
variable was found within the ANCOVA analysis. This indi-
cates that Build failures and the corresponding Build fixes are
not affected by variability within projects or project categories,
and that there is no evidence that the adoption of a specific
tool or tool type such as code analyzers will influence build
failures and subsequent build-fixes. A summary of the analyses
we performed for DevOps change goals is within Table XIX.

Category Most
impor-
tant
variables
affecting
DevOps
bug-fix
commit

Interpretation

ML Applied None An ML Applied projects’ adoption of
certain DevOps tool categories or a
combination of these categories is not
linked to an increase in its Bug fixes

ML Tool Build *
Analyzer
* Test

An ML Tool projects’ commits which
modify DevOps-files and fix bugs increase
when Build, Code Analysis, and Test tools
are adopted by them. This implies that
these tools are being efficiently used to find
and subsequently fix bugs.

Non-ML Deploy-
ment
* Test,
Build
* CI,
Build
* An-
alyzer,
Build *
Test

A Non-ML projects’ commits which
modify DevOps-files and fix bugs increase
when combination of Build, Code Analysis,
Test, Deployment, CI tools are adopted by
them. This implies that the tools from these
categories which facilitate bug-locating
are being efficiently used to find and
subsequently fix bugs.

TABLE XIX: Summary of ANCOVA analyses results for
DevOps change goals

4) Interpretation of results: Using these findings, it’s evi-
dent that developers working on ML Applied projects make
numerous updates to their DevOps configuration files that are
also smaller than those of ML Tools project. By comparison,

developers behind ML Tool projects overall did a smaller
number of updates to their DevOps configuration files, that
were larger in size. Non-ML projects had frequencies of
DevOps-files updates similar to those of ML Applier projects,
with a bigger variance in update-size in comparison to both
ML categories. The frequency and size of updates, measured
through the commit-ratio and DevOps code churn of ML
Applied DevOps updates was linked to their adoption of
certain DevOps tools categories, while no such correlations
were found for ML Tool and Non-ML projects. The majority
of DevOps updating commits of all projects categories had
concerns that are not immediately related to the CI infrastruc-
ture which are in turn configured by DevOps configuration
files. However, through the ANCOVA analyses we performed,
we found that the adoption of Code Analysis, Test and other
DevOps tools by ML Tool and Non-ML projects correlates
with an increase in their bug-fixes. This signals that these
tools are being efficiently used within these projects to detect
bugs and the large effect size in the ANCOVA model signify
this effect has important consequences on the number of bug-
fixing commits. However, while adopting these tools is linked
with larger and more frequent updates to DevOps configuration
files within ML Applied projects, it is not linked with an
increase in bug-fixing commits. This hints at a less efficient
adoption of these tools which requires more frequent updates
with more effort but no noticeable results on bug-fixes within
ML Applied projects

Finding 2: While ML Applied DevOps configuration
files updates are more frequent, they are smaller in
size than those of ML Tool DevOps configuration files,
are less concerned with CI Build fixes, and imply that
DevOps tools are being used less efficiently within
these projects.

C. DevOps Adoption Advantages

Research Question 3: What are the advantages of
adopting DevOps tools across the different types of
projects?

1) Commit Frequency: Among the goals of the adoption
of DevOps tools and practices within software projects is
to increase the rate at which developers share their code
with other stakeholders within their teams, which in-turn is
measured with the frequency of commits that developers make
during a specific development period. As illustrated in Figure
9, the projects that adopted 1 or more specific types of DevOps
tools had generally higher monthly commit frequencies. This
was especially true for projects that adopted CI, Deployment
Automation and Testing tools, where the increase in commit
frequencies was significant across all types of projects. In
addition, ML Tool projects tend to see more frequent commits
than ML Applied projects, which in turn have more frequent
commits than Non-ML projects.

Source Sig. Partial Details
Eta
Squared

Intercept <.001 .043 Intercept of the model
DevOps <.001 .013 DevOps tool(s) adoption

Number of Pull requestsN_Pr_Rejected <.001 .004 rejected
Number of Pull requestsN_Pr_Core_Rejected .002 .003 by core developers rejected

Age In Days .003 .003 Project’s age
Team Size .004 .003 Project’s team size
N_Stars .013 .002 Number of stars

Number of Pull requestsN_Pr_Core_Open .036 .002 by core developers opened
N_issues_Open .044 .001 Number of issues opened

R Squared = .185 (Adjusted R Squared = .182)

TABLE XX: ANCOVA analysis of Commit frequency for
ML Applied projects (Only statistically significant variables
are shown)

When statistically analyzing the Commit frequency through
ANCOVA for ML Applied projects, as illustrated in Table XX,
it’s clear that DevOps tool adoption has a significant and
important effect on the increase of monthly commit averages,
especially since DevOps adoption is the variable with the
largest effect size within the ANCOVA model.

Source Sig. Partial Details
Eta
Squared

Team Size <.001 .061 Size of the project’s team
Intercept <.001 .037 Intercept of the model
N_issues_Open <.001 .011 Number of Pull requests opened
DevOps .018 .005 Adoption of DevOps tool(s)
N_Forks .029 .005 Number of Forks

R Squared = .198 (Adjusted R Squared = .189)

TABLE XXI: ANCOVA analysis of Commit frequency for
ML Tool projects (Only statistically significant variables are
shown)

For ML Tool projects, the ANCOVA analysis in table XXI,
shows that DevOps tools adoption by these projects also has
an important effect on the increase of their monthly commit
averages. However, the size of a project’s team and the number
of open issues it has seem to have a larger effect than its
DevOps adoption on its commit averages.

For Non-ML projects, the ANCOVA analysis in table XXII,
shows that DevOps tools adoption by Non-ML projects posi-
tively affects its monthly commit averages. However, the size
of a project’s team and other variables related to its pull
requests have a larger effect than its DevOps adoption on its
commit averages.

The summary of our findings through the ANCOVA analysis
linked to the average monthly Commits metric is illustrated
in Table XXIII. Applying the one-way ANOVA test on this
metric across the different categories, we obtain a p-value of s
7.29e−13, implying significant statistical difference regarding
the average monthly commit frequency metric between the
three groups of projects.

Fig. 9: Commit Frequency in correlation to Project Type and DevOps tool adoption (Outliers removed with IQR [70])

Fig. 10: Merging Commit Frequency in correlation to Project Type and DevOps tool adoption(Outliers removed with
IQR [70])

Source Sig. Partial Details
Eta
Squared

Team Size <.001 .015 Project’s team size
Intercept <.001 .007 Intercept of the model

Number of Pull requestsN_Pr_Core_Rejected <.001 .005 by core developers rejected
Number of Pull requestsN_Pr_Rejected <.001 .003 rejected
Number of Pull requestsN_Pr_Merged .004 .002 merged

DevOps .006 .002 Adoption of DevOps tool(s)
Number of Pull requestsN_Pr_Core_Merged .016 .002 by core developers merged

R Squared = .057 (Adjusted R Squared = .054)

TABLE XXII: ANCOVA analysis of Commit frequency for
Non-ML projects (Only statistically significant variables are
shown)

Category Most important
variables affecting
Commit Frequency

Interpretation

ML Applied DevOps,
N_Pr_Rejected,
N_Pr_Core_Rejected,
Age In Days, Team
Size, N_Stars,
N_Pr_Core_Open,
N_issues_Open

An ML Applied projects’
adoption of DevOps has the
largest effect on its monthly
commits. Other factors such
as its Number of rejects PRs
and Team-size also affect this
metric.

ML Tool Team Size,
N_issues_Open,
DevOps, N_Forks

An ML Tool project’s adoption
of DevOps has an important
effect on its monthly commits,
however, other factors such
as its Team-size have a larger
effect on this metric.

Non-ML Team Size,
N_Pr_Core_Rejected,
N_Pr_Rejected,
N_Pr_Merged,
DevOps,
N_Pr_Core_Merged

A Non-ML project’s adoption
of DevOps has an important
effect on its monthly commits,
however, other factors such
as its Team-size have a larger
effect this metric.

TABLE XXIII: Summary of ANCOVA analysis results of
Commit frequency

2) Merging Frequency: Increasing the rate at which de-
velopers merge their code with other code branches, thus
increasing their code integration, is also a crucial goal of
DevOps practices and tools. Merges are represented with
merging commits in a Git repository, and the frequency of
branch merges is measured with the frequency of merging
commits that developers make within a specific development
period. As represented in Figure 10, the projects that adopted
a specific type or more of DevOps tools had generally higher
monthly merge commit frequencies. This was especially true
for projects that adopted Analyzer, CI, and Deployment Au-
tomation tools, where the increase in merge frequencies was
significant across all types of projects. ML Tool projects tend
to have more frequent merges than Applied projects, which in
turn have more frequent commits than Non-ML projects.

Source Sig. Partial Details
Eta
Squared

Intercept <.001 .018 Intercept of the model
DevOps <.001 .011 Adoption of DevOps tool(s)
Age In Days .005 .003 Age of the project
N_Stars .016 .002 Number of stars
N_Pr_Merged .019 .002 Number of Pull Requests merged

R Squared = .258 (Adjusted R Squared = .255)

TABLE XXIV: ANCOVA analysis of Merge Commit
frequency for Applied projects (Only statistically significant
variables are shown)

To examine the relationship between DevOps tools’ adop-
tion and the frequency of merge commits, we built ANCOVA
models for the different project categories. For ML Applied
projects, this model is represent in Table XXIV. Similar to
the results found within Section IV-C1 it’s clear that adopting
DevOps tools has a statistically-significant and important
effect on the increase of monthly merge averages for ML
Applied projects. DevOps adoption is the variable with the
largest effect size within the ANCOVA model, indicating that

DevOps adoption has the highest positive influence on Merge
commit rates within ML Applied projects.

Source Sig. Partial Details
Eta
Squared

Team Size <.001 .047 Size of the project’s team
Intercept <.001 .022 Intercept of the model
DevOps .021 .005 Adoption of DevOps tool(s)

R Squared = .143 (Adjusted R Squared = .133)

TABLE XXV: ANCOVA analysis of Merge Commit
frequency for Tool projects (Only statistically significant
variables are shown)

Moving on to ML Tool projects, Table XXV shows that
adopting DevOps tools also has a statistically-significant and
important effect on the increase of monthly merge averages for
ML Tool projects. However, it’s important to note that an ML
Tool project’s team-size has a much larger effect on Merge
commit rates within ML Tool projects.

Source Sig. Partial Details
Eta
Squared

Team Size <.001 .052 Size of the project’s team
Age In Days <.001 .006 Age of the project
Intercept <.001 .004 Intercept of the model
N_Forks <.001 .003 Number of forks
N_Stars <.001 .003 Number of stars

Number of pull requestsN_Pr_Rejected <.001 .003 rejected
Number of pull requestsN_Pr_Core_Rejected .003 .002 by core developers rejected

R Squared = .086 (Adjusted R Squared = .083)

TABLE XXVI: ANCOVA analysis of Merge Commit
frequency for Non-ML projects (Only statistically significant
variables are shown)

Through the ANCOVA analysis on Non-ML projects, shown
in Table XXVI, it seems that DevOps adoption has no effect on
Non-ML merge rates. To better investigate this contradiction
with existing findings regarding DevOps tool adoption on
merge frequency [7], we performed a detailed analysis on the
effects of the adoption of the different categories of DevOps
tool categories, such as Build Tools, CI Tools, etc., on Non-ML
merge frequency, which is illustrated within Table XXVII.

Source Sig. Partial Details
Eta
Squared

Team Size <.001 .042 Size of the project’s team
CI * Analyzer Adoption of CI, CA
* Test <.001 .012 and Test tools
Build * CI * Adoption of Build, CI,
Deployment * Analyzer <.001 .006 DA and CA tools
Build * CI Adoption of Build, CI
* Analyzer <.001 .006 and CA Tools

R Squared = .144 (Adjusted R Squared = .135)

TABLE XXVII: Detailed ANCOVA analysis of Merge
Commit frequency for Non-ML projects (Only statistically
significant variables are shown)

In this model, the statistically significant variable with the
second largest effect size is the adoption of CI tools, Analyzer
tools and Test tools, implying that these specific tool categories
are more likely to increase the merge frequency of Non-ML
projects, versus the adoption of any combination of tools,
which apparently has no effect on the number of monthly
merges.

Category Most
important
variables
affecting
Merging
Commit
Frequency

Interpretation

ML Applied DevOps, Age
In Days,
N_Stars,
N_Pr_Merged

An ML Applied projects’ adoption
of DevOps has the largest effect on
its monthly merging commits. Other
factors such as its number of stars
and Number of Pull requests merged
also affect this metric.

ML Tool Team Size,
DevOps

An ML Tool project’s adoption of
DevOps has an important effect on its
monthly commits, however, Team-size
has a larger effect this metric.

Non-ML Team Size, CI
* Analyzer
* Test,
Build * CI
* Deployment
* Analyzer,
Build * CI *
Analyzer

An Non-ML project’s adoption of
certain DevOps tool categories at
the same time, such as adoption CI,
Code Analysis and Test tools, has
an important effect on its monthly
merging commits. However, its Team-
size has a larger effect this metric.

TABLE XXVIII: Summary of ANCOVA analyses results for
Merging Commits frequency

The summary of our ANCOVA analyses in relation to
the Average Monthly Merging Commits metric is detailed
in Table XXVIII. Applying the one-way ANOVA test on the
Average Monthly Merging Commits metric across the different
project categories, we obtain a p-value of s 1.61e−13, imply-
ing that there is a significant statistical difference between the
three groups of projects.

3) Issue Duration: Allowing the quick resolution of
problems and shortening down-time are also some of the
purported goals of adopting DevOps within a software
project. To measure the effectiveness of teams at resolving
such problems, we used the average issue duration metric
to approximate the duration an issue takes to be resolved
after it’s opened within a specific project, in accordance to
a project’s category and its adoption of one or more types
of DevOps tools. As illustrated in figure 11, adopting any
type of DevOps tools corresponds to a quicker resolution of
issues, especially the adoption of Analyzer, CI, Deployment
Automation and Testing tools. Furthermore, ML Tool projects
tend to have quicker resolution of issues than Applied projects,
which in turn have a quicker resolution then Non-ML projects.

When analyzing the effect of the adoption of DevOps tools
on issue durations of ML Applied projects, as illustrated in
the ANCOVA analyses in Table XXIX, it’s clear that it has a
statistically significant and important effect on decreasing the

Fig. 11: Average Issue Duration in correlation to Project Type and DevOps tool adoption(Outliers removed with IQR [70])

Source Sig. Partial Details
Eta
Squared

N_issues_Open <.001 .033 Number of issues open
Intercept <.001 .032 Intercept of the model
Age In Days <.001 .021 Project’s age
DevOps <.001 .012 Adoption of DevOps tool(s)

Number of pull requestsN_Pr_Rejected <.001 .007 rejected
Number of pull requestsN_Pr_Core_Rejected <.001 .006 by core developers rejected

Team Size .003 .003 Project’s team size
Number of pull requestsN_Pr_Core_Open .004 .003 opened by core developers
Number of pull requestsN_Pr_Merged .009 .003 merged
Number of pull requestsN_Pr_Core_Merged .033 .002 by core developers merged

R Squared = .096 (Adjusted R Squared = .092)

TABLE XXIX: ANCOVA analysis of Average Issue duration
for Applied projects (Only statistically significant variables
are shown)

average issue durations across all project categories. However,
the number of issues open and the age of the project seem to
have larger effects than DevOps adoption.

Source Sig. Partial Details
Eta
Eta

Intercept <.001 .095 Intercept of the model
N_issues_Open <.001 .022 Number of issues open
Age In Days <.001 .017 Age of the project

Number of pull requestsN_Pr_Core_Open .019 .006 opened by core developers
DevOps .045 .004 Adoption of DevOps tool(s)
N_Pr_Open .046 .004 Number of pull requests open

R Squared = .094 (Adjusted R Squared = .083)

TABLE XXX: ANCOVA analysis of Average Issue duration
for Tool projects (Only statistically significant variables are
shown)

Moving on to the ANCOVA analysis regarding issue du-
rations of ML Tool projects illustrated in Table XXX, it’s
clear that it has an important effect on decreasing the average
issue durations. However, similar to ML Applied projects, the
number of issues open and the age of the project seem to have
larger effects than DevOps adoption.

By observing the ANCOVA analysis of the issue durations
of Non-ML projects illustrated in Table XXXI, it’s clear that it
has an important effect on decreasing average issue durations.
However, other factors, such as the number of pull requests

Source Sig. Partial Details
Eta
Squared

Number of Pull requestsN_Pr_Open <.001 .101 opened
Age In Days <.001 .076 Age of the project

Number of IssuesN_issues_Open <.001 .057 opened by core developers
Intercept <.001 .049 Intercept of the model

Number of Pull requestsN_Pr_Core_Open <.001 .043 opened by core developers
Team Size <.001 .027 Size of the project’s team

Number of Pull requestsN_Pr_Rejected <.001 .012 rejected
DevOps <.001 .008 Adoption of DevOps tool(s)
N_Stars <.001 .007 Number of stars of project

Number of Pull requestsN_Pr_Core_Rejected <.001 .006 by core developers rejected
N_Forks .001 .003 Number of forks of a project

R Squared = .327 (Adjusted R Squared = .325)

TABLE XXXI: ANCOVA analysis of Average Issue duration
for Non-ML projects (Only statistically significant variables
are shown)

open and the age of the project seem to have larger effects
than DevOps adoption.

Category Most important
variables affecting
Issue Duration

Interpretation

ML Applied N_issues_Open, Age
In Days, DevOps,
N_Pr_Rejected,N_Pr
_Core_Rejected,
Team Size,
N_Pr_Core_Open,
N_Pr_Merged,
N_Pr_Core_Merged

An ML Applied projects’
DevOps adoption helps it
reduce its issue duration,
however, other factors such
as its numbers of issues open
and its age have a larger
effect on these durations.

ML Tool N_issues_Open,
Age In Days,
N_Pr_Core_Open,
DevOps, N_Pr_Open

An ML Tool project’ DevOps
adoption helps it reduce its
issue duration, however, other
factors such as its numbers
of issues open and number of
PRs open have a larger effect
on these durations.

Non-ML N_Pr_Open, Age In
Days, N_issues_Open,
N_Pr_Core_Open,
Team Size,
N_Pr_Rejected,
DevOps, N_Stars,
N_Pr_Core_Rejected,
N_Forks

A Non-ML project’ DevOps
adoption helps it reduce
its issue duration, however,
other factors such as its age
and number of PRs open
have a larger effect on these
durations.

TABLE XXXII: Summary of ANCOVA analyses results for
Average Issue Duration

A summary regarding the ANCOVA analyses linked to the
average issue duration metric is illustrated in Table XXXII.
Applying the one-way ANOVA test on the Average Monthly
Merging Commit metric across the different categories, we ob-
tain a p-value of s 1.02e−174, implying significant statistical
difference between the three groups of projects.

4) Code Quality: In addition to positively influencing the
code sharing rates and issue resolution durations, DevOps is
also posed as a method of improving the quality of devel-
opment processes of a project as well as its code base. To
evaluate the validity of this claim, we used the state-of-the-
art tool SonarQube [62] via the method described in Sec-
tion III-C3c in order to evaluate the quality of the projects
within our dataset. We were able to successfully generate
code quality reports for 2566 ML Applied projects, 969 ML
Tool projects and 3320 Non-ML projects, forming respectively
88.02%, 86.82% and 81.45% of the total number of projects
from their categories. SonarQube was unable to process some
projects due to problems such as software incompatibility, as
the free version is not compatible with C and C++ projects,
missing dependencies, internal memory management issues,
among other reasons.

Source Sig. Partial Details
Eta
Squared

Intercept 0.000 0.435 Intercept of the model
DevOps <0.001 0.08 Adoption of DevOps
Age In Days 0.002 0.004 Age of a project
N_issues_Open 0.006 0.006 Number of Issues Open
Team Size 0.011 0.003 Age of a project

R Squared = .065 (Adjusted R Squared = .059)

TABLE XXXIII: ANCOVA analysis of Reliability for ML
Applied projects

Source Sig. Partial Details
Eta
Squared

Intercept 0.000 0.992 Intercept of the model
DevOps <0.001 0.004 Adoption of DevOps

R Squared = .011 (Adjusted R Squared = .004)

TABLE XXXIV: ANCOVA analysis of Maintainability for
ML Applied projects

Through the ANCOVA analyses within Table XXXIII, it’s
clear that an ML Applied project’s reliability is correlated and
most improved by its DevOps adoption. It’s also interesting to
note that a project’s age, team size, and number of issues have
a significant effect on improving a project’s reliability. Longer-
lived projects with larger teams, who are more capable at
keeping track of bugs, are more likely to have better Reliability
metrics. Focusing on ML Applied project’s Maintainability, it’s
clear through Table XXXIV that DevOps adoption is the only
project property that is statistically correlated to this quality
metric. Overall, through these two analyses, it’s clear that
DevOps adoption is the number one factor influencing an ML
Applied project’s code quality.

Source Sig. Partial Details
Eta
Squared

Intercept 0.000 0.479 Intercept of the model
DevOps 0.001 0.013 Adoption of DevOps

R Squared = .089 (Adjusted R Squared = .077)

TABLE XXXV: ANCOVA analysis of Reliability for ML
Tool projects

Moving on to ML Tool projects, it’s clear through Table
XXXV that DevOps is the only statistically significant variable
that affects these projects Reliability metric. However, no such
correlation was found concerning the Maintainability metric,
as no statistically significant variables were found within its
ANCOVA analysis. This allows us to deduce that DevOps
adoption only affects certain aspect of an ML Tool project’s
code quality, yet it is the only variable that seems to affect it,
regardless of an ML Tool project’s team size, age, etc.

Source Sig. Partial Details
Eta
Squared

Intercept 0.000 0.476 Intercept of the model
DevOps 0.000 0.010 Adoption of DevOps
N_issues_Open 0.000 0.009 Number of Issues Open
Age In Days 0.000 0.005 Age of a project
NBForks 0.013 0.002 Number of Forks
Team size 0.005 0.002 Size of project’s team

R Squared = .059 (Adjusted R Squared = .055)

TABLE XXXVI: ANCOVA analysis of Reliability for Non-
ML projects

Concerning Non-ML projects, it’s clear
through Table XXXVI that DevOps is the single biggest
contributor to a project’s improved Reliability metric. In
addition, a project’s number of issues open, age, number of
forks and Team size all correlate to this metric, signaling that
multiple factors can influence a Non-ML project’s reliability.
However, it’s also important to note that no statistically
significant variables were found within the ANCOVA
analyses of the Maintainability metric.

A summary regarding the ANCOVA analyses linked to
the reliability and maintainability metrics is illustrated in
Table XXXVII. Applying the one-way ANOVA test on these
two metrics across the different categories, we obtain a p-
value of 5.22e−6 for Reliability, and 0.98 for Maintainability.
This is surprising as it implies significant statistical difference
between the three groups of projects for the first metric, but
similarity regarding the second metric, even though both are
code quality metrics.

5) Interpretation of results: Using these five metrics
and their associated statistical analyses, it’s evident that
employing DevOps tools of different categories has mostly
correlated with an increase in the frequency of code commits,
an increase in the merges across different branches, a reduced
duration leading up to issue resolution, and an increase in
code quality across the three different types of projects.
These advantages are especially prevalent when using CI and

Category Most
important
variables
affecting
Reliability

Most
impor-
tant
variables
affecting
Main-
tainabil-
ity

Interpretation

ML Applied DevOps,
Age In
Days,
N_issues
_Open,
Team Size

DevOps An ML Applied project’s
DevOps adoption, age, and
Number of issues open are
the most important factors
that affect its code quality

ML Tool DevOps None An ML Tool project’s
DevOps adoption is the
only statistically significant
factors affecting its code
quality

Non-ML DevOps,
N_issues
_Open,
Age In
Days,
NBForks,
Team Size

None A Non-ML project’s DevOps
adoption, Number of issues
open, age, Number of forks
and Team size are the
most important factors that
influence its code quality

TABLE XXXVII: Summary of ANCOVA analyses results
for Reliability and Maintainability

Deployment automation tools across all categories of projects.
Focusing more on ML Applied projects, it’s evident that
employing DevOps tools has an important and generally
positive effect on the development activities, issue resolution,
and code quality within these projects, thus signaling that
while these projects may have a harder time employing
DevOps tools, as per the findings in Section IV-B, they also
have the most to gain from using DevOps tools within their
code bases.
ML Tool and Non-ML projects that employ DevOps show
mostly similar improvements in comparison to their non-
DevOps counterparts, however, the improvements are not as
drastic as those of the Applied ML projects.

Finding 3: All categories of projects that employ
DevOps show improvements in their development, code
quality and issue resolution metrics in comparison
to their non-DevOps counterparts, especially in the
case of ML Applied projects, supporting the claim that
DevOps tools can improve the development processes
of most projects they are used in.

V. IMPLICATIONS OF THE PROPOSED STUDY

In this section, we discuss the implications of our empirical
analysis. The following is a list of actionable items we
identified:

• Our analysis on DevOps adoption rates and trends,
detailed in section IV-A, identified that ML Applied
projects were slow in adopting DevOps. They also had
a lower adoption across different DevOps tool categories

such as Build, CI and Code Analyzer. While analyzing the
exact reasons behind the barriers to adoption of DevOps
tools is by ML projects is not within this work’s scope,
our results shed a light on the necessity for researchers
to study the barriers to adopting DevOps in ML projects
and identify possible improvement scopes. These may
include ML DevOps task automation, DevOps tools for
ML models evaluation and monitoring, etc. On the other
hand, tool developers can employ program analysis [71]
techniques to automatically generate ML DevOps config-
uration files which can lower the barriers of entry for data
scientists who might be unfamiliar with DevOps concepts
and practices.

• Our DevOps tool maintenance effort analysis, detailed
within sections IV-B1 and IV-B2, reveals that even
though ML Applied projects much less adoption of
DevOps than the other two categories (ML Tools and
Non-ML projects), their developers are changing DevOps
configuration files more frequently. This highlights the
necessity of working on support for automatic synchro-
nization of DevOps configuration files. This may be
provided via change recommendation tools [72], safe
refactoring tools [73], and others. These tools can help
reduce maintenance overhead, and can provide technical
support to developers and data scientists who may not be
very familiar with DevOps tools.

• Our analysis on events that trigger DevOps file changes,
within section IV-B3, identified that bug-fixing com-
mits within Tool project that alter DevOps configuration
files were much more prevalent in comparison to ML
Applied and Non-ML projects. This indicates that the
software maintenance research community should invest
more heavily in co-evolution analysis [74] of functional
code and DevOps configuration files to facilitate early
bug-detection. In turn, this will save both time and
resources and allow teams to invest them in improving
their software product’s quality and reputation, rather than
resolving problems within it.

• Our analysis on DevOps adoption advantages, within
section IV-C, identified that for all project types, adopting
DevOps has positive consequences on the code sharing
and code integration speed and frequency and helped
decrease the duration necessary for issue resolution and
improve its quality. Even though using DevOps tools for
all types of projects, including ML projects, introduced
adoption and maintenance overhead, it appears that the
benefits of DevOps outweigh the associated costs. Thus,
data scientists and ML developers should adopt DevOps
tools within their projects. Furthermore, we believe that
adopting DevOps tools present these benefits for all
ML projects, even for those with smaller teams. This is
especially prevalent in the case of ML Applied projects,
which had smaller team sizes overall but generally saw
larger improvements resultant of DevOps adoption than
ML Tool projects.

• Software engineering educators lack concrete ideas on

ML DevOps integration trends, benefits, and tools, pre-
venting them from training students with ML DevOps
skills that would allow them to build industry-ready ML-
based systems. This study helps educators understand
the current trends, benefits, and tools of ML DevOps in
order to include up-to-date pedagogical material on ML
DevOps.

VI. THREATS TO VALIDITY

Our empirical analysis has some limitations that we would
like to discuss:
Construct validity: We used the code churn and commit ratio
metrics to estimate DevOps configuration files maintenance
efforts. However, while these metrics may not reflect mainte-
nance effort 100% correctly, they remain representative work
items for maintaining source code and other files.
Internal validity: During DevOps tools detection, we used a
file name patterns list which we manually constructed. To mit-
igate bias, one of the co-authors performed a manual checking
of DevOps configuration files and file naming patterns in both
ML projects and Non-ML projects. In addition, most tools
have highly specific naming conventions, so the probability of
false positives is minimal. Some tools, such as logging tools,
may be hosted on third-party servers and do not need to have
any configuration files within a repository, but they remain the
minority among DevOps tools. Furthermore, DevOps tools that
do not leave traces in files within the code repository, such as
communication tools, can not be detected via our approach.
External validity: Our analysis is based on public repos-
itories on GitHub. These results might differ for pri-
vate GitHub repositories and closed repositories, includ-
ing projects developed by companies. However, our project
set does contain projects developed by companies, such
as tensorflow/tensor2tensor which is backed by
Google. We also estimate that at least 30% of ML Tool projects
are backed by major organizations such as Microsoft and
IBM. Furthermore, since we used popular organization and
user-managed projects within our analysis, we expect many
similarities of behavior.

VII. CONCLUSION

In this study, we conducted an empirical study on 4031
ML projects and a comparative set of 4076 Non-ML projects
hosted in GitHub for ML DevOps adoption, maintenance effort
and benefit analysis. Through our analysis, we found evidence
of a lower adoption of DevOps tools within ML Applied
projects, as well as different development practices and efforts
in relation to these files that tended to be less efficient than
those of ML Tool and Non-ML projects. In contrast, this type
of projects has the most to gain from adopting these tools,
and with similar advantages for both ML Tool and Non-ML
projects. To the best of our knowledge, this is the first large
scale empirical study on ML DevOps adoption, maintenance
effort and benefit analysis. This exploratory work lays the
foundation for future works, where we plan to investigate
the roadblocks developers encounter when adopting different
DevOps tools and the features they need to adopt to ease their

adoption by ML developers. Our data and code are available
at [48].

ACKNOWLEDGMENTS

The UofM-Dearborn authors are supported in part by UofM-
Dearborn Research Support and NSF Award NSF-2152819.

REFERENCES

[1] S. Liu, S. Liu, W. Cai, S. Pujol, R. Kikinis, and D. Feng,
“Early diagnosis of alzheimer’s disease with deep learn-
ing,” in 2014 IEEE 11th International Symposium on
Biomedical Imaging (ISBI), April 2014, pp. 1015–1018.

[2] H. N. Mhaskar, S. V. Pereverzyev, and M. D. van der
Walt, “A deep learning approach to diabetic blood
glucose prediction,” CoRR, vol. abs/1707.05828, 2017.
[Online]. Available: http://arxiv.org/abs/1707.05828

[3] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deep-
driving: Learning affordance for direct perception in
autonomous driving,” in 2015 IEEE International Con-
ference on Computer Vision (ICCV), 2015, pp. 2722–
2730.

[4] “The algorithm that beats your bank manager,”
https://www.forbes.com/sites/parmyolson/2011/
03/15/the-algorithm-thatbeats-your-bank-manager/
#15da2651ae99/, accessed: 2020-12-29.

[5] “Evans data corporation. 2019. global developer pop-
ulation and demographic study.” https://evansdata.com/
reports/viewRelease.php?reportID=9/, accessed: 2019-
12-01.

[6] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles,
“A survey of devops concepts and challenges,” ACM
Comput. Surv., vol. 52, no. 6, Nov. 2019. [Online].
Available: https://doi.org/10.1145/3359981

[7] “Seven devops tips for faster app develop-
ment.” https://resources.github.com/downloads/
GitHub-Top-7-tips-for-faster-application-development-with-DevOps.
pdf/, accessed: 2020-12-30.

[8] S. M. Brown Allana, Kersten Nigel, “2020 state of
devops report,” 2020.

[9] A. Chen, A. Chow, A. Davidson, A. DCunha, A. Ghodsi,
S. A. Hong, A. Konwinski, C. Mewald, S. Murching,
T. Nykodym et al., “Developments in mlflow: A system
to accelerate the machine learning lifecycle,” in Pro-
ceedings of the fourth international workshop on data
management for end-to-end machine learning, 2020, pp.
1–4.

[10] “Amazon sagemaker,” https://aws.amazon.com/
sagemaker/, accessed: 2020-12-30.

[11] L. E. Lwakatare, I. Crnkovic, and J. Bosch, “Devops
for ai – challenges in development of ai-enabled
applications,” in 2020 International Conference on
Software, Telecommunications and Computer Networks
(SoftCOM). IEEE, Sep 2020, p. 1–6. [Online].
Available: https://ieeexplore.ieee.org/document/9238323/

[12] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee,
A. Moody, B. R. de Supinski, and S. Futral, “The

http://arxiv.org/abs/1707.05828
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://www.forbes.com/sites/parmyolson/2011/03/15/the-algorithm-thatbeats-your-bank-manager/#15da2651ae99/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://evansdata.com/reports/viewRelease.php?reportID=9/
https://doi.org/10.1145/3359981
https://resources.github.com/downloads/GitHub-Top-7-tips-for-faster-application-development-with-DevOps.pdf/
https://resources.github.com/downloads/GitHub-Top-7-tips-for-faster-application-development-with-DevOps.pdf/
https://resources.github.com/downloads/GitHub-Top-7-tips-for-faster-application-development-with-DevOps.pdf/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://ieeexplore.ieee.org/document/9238323/

spack package manager: Bringing order to hpc software
chaos,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’15. New York, NY, USA:
Association for Computing Machinery, 2015. [Online].
Available: https://doi.org/10.1145/2807591.2807623

[13] K. Hoste, J. Timmerman, A. Georges, and S. De Weirdt,
“Easybuild: building software with ease,” in High Per-
formance Computing, Networking, Storage and Analysis,
Proceedings. IEEE, 2012, pp. 572–582. [Online]. Avail-
able: http://dx.doi.org/10.1109/SC.Companion.2012.81

[14] “Docker,” https://www.docker.com/, accessed: 2020-12-
20.

[15] “Kubernetes,” https://kubernetes.io/, accessed: 2020-12-
20.

[16] C. Renggli, F. A. Hubis, B. Karlaš, K. Schawinski,
W. Wu, and C. Zhang, “Ease.ml/ci and ease.ml/meter
in action: Towards data management for statistical
generalization,” Proc. VLDB Endow., vol. 12, no. 12,
p. 1962–1965, Aug. 2019. [Online]. Available: https:
//doi.org/10.14778/3352063.3352110

[17] G. Fursin, H. Guillou, and N. Essayan, “Codereef: an
open platform for portable mlops, reusable automation
actions and reproducible benchmarking,” 2020.

[18] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. Hong,
A. Konwinski, S. Murching, T. Nykodym, P. Ogilvie,
M. Parkhe, F. Xie, and C. Zumar, “Accelerating the
machine learning lifecycle with mlflow,” IEEE Data Eng.
Bull., vol. 41, pp. 39–45, 2018.

[19] L. E. Lwakatare, I. Crnkovic, and J. Bosch, “De-
vops for ai – challenges in development of ai-enabled
applications,” in 2020 International Conference on
Software, Telecommunications and Computer Networks
(SoftCOM), 2020, pp. 1–6.

[20] D. Gonzalez, T. Zimmermann, and N. Nagappan, “The
state of the ml-universe: 10 years of artificial intelligence
&; machine learning software development on github,”
in Proceedings of the 17th International Conference on
Mining Software Repositories (MSR), May 2020.

[21] D. Teixeira, R. Pereira, T. A. Henriques, M. Silva, and
J. Faustino, “A systematic literature review on devops
capabilities and areas:,” International Journal of Hu-
man Capital and Information Technology Professionals,
vol. 11, no. 2, p. 1–22, Apr 2020.

[22] R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer,
“What is devops?: A systematic mapping study on
definitions and practices,” in Proceedings of the Scientific
Workshop Proceedings of XP2016. ACM, May 2016,
p. 1–11. [Online]. Available: https://dl.acm.org/doi/10.
1145/2962695.2962707

[23] F. Erich, C. Amrit, and M. Daneva, “A mapping study
on cooperation between information system development
and operations,” in Product-Focused Software Process
Improvement, A. Jedlitschka, P. Kuvaja, M. Kuhrmann,
T. Männistö, J. Münch, and M. Raatikainen, Eds.
Springer International Publishing, 2014, p. 277–280.

[24] W. P. Luz, G. Pinto, and R. Bonifácio, “Building
a collaborative culture: A grounded theory of well
succeeded devops adoption in practice,” in Proceed-
ings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ser.
ESEM ’18. New York, NY, USA: Association
for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3239235.3240299

[25] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and
A. E. Hassan, “An empirical study of build maintenance
effort,” ser. ICSE ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 141–150. [Online].
Available: https://doi.org/10.1145/1985793.1985813

[26] R. M. Shukla and J. Cartlidge, “Agileml: A machine
learning project development pipeline incorporating
active consumer engagement,” in 2021 IEEE Asia-Pacific
Conference on Computer Science and Data Engineering
(CSDE). Brisbane, Australia: IEEE, Dec 2021, p. 1–7.
[Online]. Available: https://ieeexplore.ieee.org/document/
9718470/

[27] I. Karamitsos, S. Albarhami, and C. Apostolopoulos,
“Applying devops practices of continuous automation
for machine learning,” Information, vol. 11, no. 7, p.
363, Jul 2020. [Online]. Available: https://www.mdpi.
com/2078-2489/11/7/363

[28] N. Nahar, S. Zhou, G. Lewis, and C. Kästner,
“Collaboration challenges in building ml-enabled
systems: Communication, documentation, engineer-
ing, and process,” no. arXiv:2110.10234, Feb
2022, arXiv:2110.10234 [cs]. [Online]. Available:
http://arxiv.org/abs/2110.10234

[29] B. Karlaš, M. Interlandi, C. Renggli, W. Wu, C. Zhang,
D. Mukunthu Iyappan Babu, J. Edwards, C. Lauren,
A. Xu, and M. Weimer, “Building continuous integration
services for machine learning,” in Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, ser. KDD ’20. New York,
NY, USA: Association for Computing Machinery, 2020,
p. 2407–2415. [Online]. Available: https://doi.org/10.
1145/3394486.3403290

[30] PyGithub, “Pygithub/pygithub.” [Online]. Available:
https://github.com/PyGithub/PyGithub

[31] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov,
“Quality and productivity outcomes relating to continu-
ous integration in github,” in Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineer-
ing. ACM, Aug 2015, p. 805–816. [Online]. Available:
https://dl.acm.org/doi/10.1145/2786805.2786850

[32] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and
B. Vasilescu, “The impact of continuous integration
on other software development practices: A large-scale
empirical study,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE),
Oct 2017, p. 60–71.

[33] J. H. Bernardo, D. A. da Costa, and U. Kulesza,
“Studying the impact of adopting continuous integration

https://doi.org/10.1145/2807591.2807623
http://dx.doi.org/10.1109/SC.Companion.2012.81
https://www.docker.com/
https://kubernetes.io/
https://doi.org/10.14778/3352063.3352110
https://doi.org/10.14778/3352063.3352110
https://dl.acm.org/doi/10.1145/2962695.2962707
https://dl.acm.org/doi/10.1145/2962695.2962707
https://doi.org/10.1145/3239235.3240299
https://doi.org/10.1145/1985793.1985813
https://ieeexplore.ieee.org/document/9718470/
https://ieeexplore.ieee.org/document/9718470/
https://www.mdpi.com/2078-2489/11/7/363
https://www.mdpi.com/2078-2489/11/7/363
http://arxiv.org/abs/2110.10234
https://doi.org/10.1145/3394486.3403290
https://doi.org/10.1145/3394486.3403290
https://github.com/PyGithub/PyGithub
https://dl.acm.org/doi/10.1145/2786805.2786850

on the delivery time of pull requests,” in Proceedings
of the 15th International Conference on Mining Software
Repositories. Gothenburg Sweden: ACM, May 2018,
p. 131–141. [Online]. Available: https://dl.acm.org/doi/
10.1145/3196398.3196421

[34] H. J. Keselman, C. J. Huberty, L. M. Lix, S. Olejnik,
R. A. Cribbie, B. Donahue, R. K. Kowalchuk, L. L.
Lowman, M. D. Petoskey, J. C. Keselman et al., “Sta-
tistical practices of educational researchers: An analysis
of their anova, manova, and ancova analyses,” Review of
educational research, vol. 68, no. 3, pp. 350–386, 1998.

[35] A. Rutherford, ANOVA and ANCOVA: A GLM Approach.
Wiley, 2011. [Online]. Available: https://books.google.
com/books?id=c5aOZEniMqwC

[36] S. Rafi, W. Yu, and M. A. Akbar, “Rmdevops: A road
map for improvement in devops activities in context of
software organizations,” Proceedings of the Evaluation
and Assessment in Software Engineering, 2020.

[37] B. B. N. França, H. Jeronimo, and G. Travassos, “Char-
acterizing devops by hearing multiple voices,” in SBES
’16, 2016.

[38] L. E. Lwakatare, T. Kilamo, T. Karvonen, T. Sauvola,
V. Heikkilä, J. Itkonen, P. Kuvaja, T. Mikkonen,
M. Oivo, and C. Lassenius, “Devops in practice: A
multiple case study of five companies,” Information
and Software Technology, vol. 114, p. 217–230, Oct
2019. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0950584917302793

[39] G. B. Ghantous and A. Gill, “Devops: Concepts,
practices, tools, benefits and challenges,” Pacific-
Asia Conference On Information Systems PACIS 2017
Proceedings, 2017. [Online]. Available: https://aisel.
aisnet.org/pacis2017/96

[40] I. Bucena and M. Kirikova, “Simplifying the devops
adoption process,” in BIR Workshops, 2017.

[41] A. H. L., N. J. S., V. J., and V. K., “A basic introduction
to devops tools,” 2015.

[42] L. Yin and V. Filkov, “Team discussions and dynamics
during devops tool adoptions in oss projects,” in 2020
35th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2020, pp. 697–708.

[43] S. Mcintosh, B. Adams, and A. E. Hassan, “The
evolution of java build systems,” Empirical Softw. Engg.,
vol. 17, no. 4–5, p. 578–608, Aug. 2012. [Online].
Available: https://doi.org/10.1007/s10664-011-9169-5

[44] Y. Jiang and B. Adams, “Co-evolution of infrastructure
and source code: An empirical study,” in Proceedings
of the 12th Working Conference on Mining Software
Repositories, ser. MSR ’15. IEEE Press, 2015, p. 45–55.

[45] Github, “github/linguist.” [Online]. Available: https:
//github.com/github/linguist

[46] J. Katz, “Libraries.io Open Source Repository and
Dependency Metadata,” Jan. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3626071

[47] J. Zhu, M. Zhou, and A. Mockus, “Patterns
of folder use and project popularity: a case

study of github repositories,” in Proceedings of the
8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement - ESEM ’14.
ACM Press, 2014, p. 1–4. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2652524.2652564

[48] “Replication package,” https://figshare.com/s/
0c4b685d4ab04f7f15af.

[49] Gitpython-Developers, “gitpython-developers/gitpython.”
[Online]. Available: https://github.com/
gitpython-developers/GitPython

[50] G. Fan, C. Wang, R. Wu, X. Xiao, Q. Shi, and C. Zhang,
“Escaping dependency hell: finding build dependency
errors with the unified dependency graph,” Proceedings
of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2020.

[51] G. Robles, J. M. González-Barahona, C. Cervigón,
A. Capiluppi, and D. Izquierdo-Cortázar, “Estimating
development effort in free/open source software projects
by mining software repositories: a case study of
openstack,” in Proceedings of the 11th Working Con-
ference on Mining Software Repositories - MSR 2014.
ACM Press, 2014, p. 222–231. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2597073.2597107

[52] D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller:
Python framework for mining software repositories,”
in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering -
ESEC/FSE 2018. New York, New York, USA:
ACM Press, 2018, pp. 908–911. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3236024.3264598

[53] [Online]. Available: https://graphql.github.com/
[54] Z. Lubsen, A. Zaidman, and M. Pinzger, “Using as-

sociation rules to study the co-evolution of production
test code,” in 2009 6th IEEE International Working
Conference on Mining Software Repositories, 2009, pp.
151–154.

[55] A. Zaidman, A. Zaidman, B. Van Rompaey,
B. Van Rompaey, A. van Deursen, A. van Deursen,
S. Demeyer, and S. Demeyer, “Studying the co-evolution
of production and test code in open source and industrial
developer test processes through repository mining,”
Empirical software engineering : an international
journal, vol. 16, no. 3, pp. 325–364, 2011.

[56] H. Wu, L. Shi, C. Chen, Q. Wang, and B. Boehm,
“Maintenance effort estimation for open source
software: A systematic literature review,” in 2016 IEEE
International Conference on Software Maintenance and
Evolution (ICSME). IEEE, Oct 2016, p. 32–43. [Online].
Available: http://ieeexplore.ieee.org/document/7816452/

[57] D. H. Martin and J. R. Cordy, “On the maintenance
complexity of makefiles,” in Proceedings of the 7th
International Workshop on Emerging Trends in Software
Metrics - WETSoM ’16. ACM Press, 2016, p. 50–56.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=
2897695.2897703

https://dl.acm.org/doi/10.1145/3196398.3196421
https://dl.acm.org/doi/10.1145/3196398.3196421
https://books.google.com/books?id=c5aOZEniMqwC
https://books.google.com/books?id=c5aOZEniMqwC
https://linkinghub.elsevier.com/retrieve/pii/S0950584917302793
https://linkinghub.elsevier.com/retrieve/pii/S0950584917302793
https://aisel.aisnet.org/pacis2017/96
https://aisel.aisnet.org/pacis2017/96
https://doi.org/10.1007/s10664-011-9169-5
https://github.com/github/linguist
https://github.com/github/linguist
https://doi.org/10.5281/zenodo.3626071
http://dl.acm.org/citation.cfm?doid=2652524.2652564
https://figshare.com/s/0c4b685d4ab04f7f15af
https://figshare.com/s/0c4b685d4ab04f7f15af
https://github.com/gitpython-developers/GitPython
https://github.com/gitpython-developers/GitPython
http://dl.acm.org/citation.cfm?doid=2597073.2597107
http://dl.acm.org/citation.cfm?doid=3236024.3264598
https://graphql.github.com/
http://ieeexplore.ieee.org/document/7816452/
http://dl.acm.org/citation.cfm?doid=2897695.2897703
http://dl.acm.org/citation.cfm?doid=2897695.2897703

[58] A. Bachmann, C. Bird, F. Rahman, P. Devanbu,
and A. Bernstein, “The missing links: Bugs and
bug-fix commits,” in Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE ’10. New York, NY,
USA: Association for Computing Machinery, 2010,
p. 97–106. [Online]. Available: https://doi.org/10.1145/
1882291.1882308

[59] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli,
and P. Devanbu, “On the naturalness of buggy code,”
Proceedings of the 38th International Conference on
Software Engineering, 2016.

[60] F. Hassan and X. Wang, “Hirebuild: An automatic
approach to history-driven repair of build scripts,”
in Proceedings of the 40th International Conference on
Software Engineering, ser. ICSE ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p.
1078–1089. [Online]. Available: https://doi.org/10.1145/
3180155.3180181

[61] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and
R. Bowdidge, “Programmers’ build errors: a case study
(at google),” in Proceedings of the 36th International
Conference on Software Engineering. ACM, May 2014,
p. 724–734. [Online]. Available: https://dl.acm.org/doi/
10.1145/2568225.2568255

[62] “Code quality and code security | sonarqube.” [Online].
Available: https://www.sonarqube.org/

[63] A. Rahman, A. Agrawal, R. Krishna, and A. Sobran,
“Characterizing the influence of continuous integration.
empirical results from 250+ open source and proprietary
projects,” Proceedings of the 4th ACM SIGSOFT Inter-
national Workshop on Software Analytics, p. 8–14, Nov
2018, arXiv: 1711.03933.

[64] M. Hilton, T. Tunnell, K. Huang, D. Marinov,
and D. Dig, “Usage, costs, and benefits of
continuous integration in open-source projects,”
in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ser.
ASE 2016. New York, NY, USA: Association for
Computing Machinery, 2016, p. 426–437. [Online].
Available: https://doi.org/10.1145/2970276.2970358

[65] C. Vassallo, F. Palomba, A. Bacchelli, and
H. C. Gall, “Continuous code quality: are
we (really) doing that?” in Proceedings of the
33rd ACM/IEEE International Conference on Automated
Software Engineering. Montpellier France: ACM,
Sep 2018, p. 790–795. [Online]. Available:
https://dl.acm.org/doi/10.1145/3238147.3240729

[66] L. E. Lwakatare, A. Raj, J. Bosch, H. H. Olsson,
and I. Crnkovic, A Taxonomy of Software Engineering
Challenges for Machine Learning Systems: An Empirical
Investigation, ser. Lecture Notes in Business Information
Processing. Springer International Publishing, 2019,
vol. 355, p. 227–243. [Online]. Available: http://link.
springer.com/10.1007/978-3-030-19034-7_14

[67] S. Amershi, A. Begel, C. Bird, R. DeLine,

H. Gall, E. Kamar, N. Nagappan, B. Nushi,
and T. Zimmermann, “Software engineering for
machine learning: A case study,” in 2019 IEEE/ACM
41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE,
May 2019, p. 291–300. [Online]. Available:
https://ieeexplore.ieee.org/document/8804457/

[68] A. Arpteg, B. Brinne, L. Crnkovic-Friis, and
J. Bosch, “Software engineering challenges of
deep learning,” in 2018 44th Euromicro Conference
on Software Engineering and Advanced Applications
(SEAA). IEEE, Aug 2018, p. 50–59. [Online]. Available:
https://ieeexplore.ieee.org/document/8498185/

[69] H.-Y. Kim, “Analysis of variance (anova) comparing
means of more than two groups,” Restorative Dentistry&
Endodontics, vol. 39, no. 1, p. 74, 2014.

[70] P. J. Rousseeuw and M. Hubert, “Robust statistics for
outlier detection,” WIREs Data Mining and Knowledge
Discovery, vol. 1, no. 1, p. 73–79, 2011.

[71] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,
“Pin: building customized program analysis tools with
dynamic instrumentation,” Acm sigplan notices, vol. 40,
no. 6, pp. 190–200, 2005.

[72] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-
Carroll, “Predicting source code changes by mining
change history,” IEEE transactions on Software Engi-
neering, vol. 30, no. 9, pp. 574–586, 2004.

[73] H. K. Wright, D. Jasper, M. Klimek, C. Carruth,
and Z. Wan, “Large-scale automated refactoring using
clangmr,” in 2013 IEEE International Conference on
Software Maintenance. IEEE, 2013, pp. 548–551.

[74] Y. Jiang and B. Adams, “Co-evolution of infrastructure
and source code-an empirical study,” in 2015 IEEE/ACM
12th Working Conference on Mining Software Reposito-
ries. IEEE, 2015, pp. 45–55.

https://doi.org/10.1145/1882291.1882308
https://doi.org/10.1145/1882291.1882308
https://doi.org/10.1145/3180155.3180181
https://doi.org/10.1145/3180155.3180181
https://dl.acm.org/doi/10.1145/2568225.2568255
https://dl.acm.org/doi/10.1145/2568225.2568255
https://www.sonarqube.org/
https://doi.org/10.1145/2970276.2970358
https://dl.acm.org/doi/10.1145/3238147.3240729
http://link.springer.com/10.1007/978-3-030-19034-7_14
http://link.springer.com/10.1007/978-3-030-19034-7_14
https://ieeexplore.ieee.org/document/8804457/
https://ieeexplore.ieee.org/document/8498185/

	Introduction
	Related Work
	Methodology
	Data Set Collection
	DevOps Tools Classification
	Methods of Analysis
	Phase 1: File, Name and Import pattern collection
	Phase 2: File System Analysis
	Phase 3: Repository and Commit-based Analysis

	Results
	Adoption rates of DevOps Tools
	DevOps' current Adoption Rates
	Most popular DevOps tools
	DevOps' historical Adoption Rates

	DevOps Maintenance Efforts and Goals
	Ratio of DevOps configuration files' updates
	DevOps Coding Efforts
	DevOps Change goals
	Interpretation of results

	DevOps Adoption Advantages
	Commit Frequency
	Merging Frequency
	Issue Duration
	Code Quality
	Interpretation of results

	Implications of the Proposed Study
	Threats to Validity
	Conclusion

