
Example-Based Automatic Migration of Continuous Integration
Systems

Dhia Elhaq Rzig

dhiarzig@umich.edu

University of Michigan Dearborn

Alaa Houerbi

houerbi@umich.edu

University of Michigan Dearborn

Chungha Sung
∗

chunghs@amazon.com

Amazon Web Services

Foyzul Hassan

foyzul@umich.edu

University of Michigan Dearborn

ABSTRACT
Continuous Integration (CI) is a widely adopted software engi-

neering practice for faster code change integration and testing.

Developers often migrate between CI systems in pursuit of features

like matrix building or easier workflow. However, this migration is

effort-intensive and error-prone owing to limited knowledge of the

new CI system and its syntax. Moreover, our analysis identified that

these migrations require multiple iterations and significant time

to achieve stability in the new CI system, and there is insufficient

support for the automatic migration of CI configurations.

To mitigate this, we propose a novel approach for CI systems’

automatic migration: CIMig. Our approach utilizes example-based

mining, where it extracts translation rules and configuration pat-

terns from existing migration examples, and employs them to re-

produce this migration in new contexts. To empirically validate

and evaluate our approach, we apply it to the migration between

Travis CI and GitHub Actions. We gathered learnings from 1001

projects, and then applied them to migrate an evaluation set of

251 projects. We also performed a user study employing CIMig to

migrate the CI systems of five Java projects. These analyses helped

us perform a qualitative and quantitative evaluation of CIMig, and

we contextualize our results by comparing them with those of the

manual-rule-based GitHub Actions Importer. Furthermore, our tool

generated files that were rated favorably by developers and saved

them an average of 42.4 minutes over the manual migration of

these same projects. Our example learning-based approach is also

more flexible, as proven by our ability to apply it to migrate GitHub

Actions files to Travis CI, which GitHub Actions Importer can not

do. We believe CIMig is the first generic approach of its kind to mi-

grate CI systems and can be applied to other software configuration

system migrations. Our replication package is available at [5].

1 INTRODUCTION
Continuous Integration (CI) is a widely used software engineer-

ing (SE) process for automatically integrating changes in shared

repositories. It has enabled drastic change and improvement in

SE processes and outcomes, such as quicker issue resolution, and

faster shipping [41, 84, 86]. Travis CI and GitHub Actions (GHA)

are the most popular CI tools for Open Source Software (OSS)

projects [35, 41, 67], and migrations occur frequently between these

two tools [35]. However, these migrations are slow and error-prone

due to various factors [50], and further complicated by a lack of

∗
The research work is not related to the author’s position in the affiliation.

tool-support. The only official tool, GitHub Actions Importer [32],

only supports migrating to GHA, relies on manual mappings, and

lacks support for features such as the migration of secrets like au-

thorization tokens. [28]. Moreover, this tool is technology-specific

and can not be applied to other CI systems.

Most existing migration research works focus on analyzing and

migrating source code between programming languages [4, 25, 27,

54, 61], and few works are concerned with the analysis and mi-

gration of configuration code [34, 40, 65, 77], and none tackled

the automatic migration of CI configuration code. Many differ-

ences exist between source code and configuration. Source code

defines the behavior of software, relies on programming languages

like Java, Python, etc., with more descriptive logic syntax, and is

generally managed and documented by developers. Configuration

code describes the parameters of a software application [11], re-

lies on markup languages like YAML or domain-specific languages

(DSLs) [78] with higher abstraction, and is generally maintained by

DevOps engineers [78]. The migration of CI systems is challeng-

ing because of the differences between the Source and Target CI

systems [50], owing to the usage of DSLs with higher abstraction.

Moreover, our analysis identified that these migrations require mul-

tiple iterations and a significant time span to achieve stability in

the Target CI system.

To mitigate this difficulty, we propose a novel approach CIMig
that employs example-based mining, to migrate CI configurations

betweenCI system. CIMig automatically learns rules from semantically-

equivalent tuples of CI files originating from different tools, then

applies its learnings to migrate CI files from a Source to a Target

CI system. To validate and evaluate our approach, we utilized it

to perform migrations between GHA and Travis CI. We assessed

the results of CIMig through automatic and manual evaluations,

described its cost, and analyzed some of the cases where it fails.

Through this paper, we answer the following research questions:

RQ1: How effective is the proposed migration pipeline?

RQ2:What is the cost of the migration pipeline?

RQ3:What are the limitations of our approach ?

CIMig can translate 70.82% of a Travis CI file and 51.86% of a

GHA file on average. Its translations from Travis to GHA are com-

petitive with GitHub Actions Importer, where they had an average

cosine [69] similarity of 0.51 to the developer’s hand-crafted man-

ual translations, versus 0.45 achieved by GitHub Actions Importer.

Unlike the latter, CIMig also translates syntax in the opposite direc-

tion, where it generates files with an average 0.35 cosine similarity

to the developer’s versions.

ar
X

iv
:2

40
7.

02
64

4v
1

 [
cs

.S
E

]
 2

 J
ul

 2
02

4

Our main contributions through this work are:

• A novel technology-agnostic CI migration technique leveraging

Apriori Rule Mining and Tree Association Rules.

• A comprehensive evaluation to evaluate the effectiveness of

CIMig, and of a few important failure scenarios.

• A dataset of GitHub Actions and Travis CI configuration files

from 30,543 real-world Java projects shared at [5].

We motivate our work within Section 2. We discuss its back-

ground in Section 3. We detail our approach in Section 4, and the

quality, cost, and shortcomings of applying techniques to migra-

tions between GHA and Travis CI within Section 6. Related works

are detailed in Section 7, the threats to validity are discussed in Sec-

tion 8, and finally, we conclude our work in Section 9.

2 PROBLEM CONTEXTUALIZATION
Prior research [50] has identified through qualitative analysis that

migrating a CI infrastructure is a difficult process, due to tech-

nical and human hurdles. To further validate these findings, we

performed an empirical study, where we analyzed 1252 projects

that migrated from Travis CI to GHA, one of the most common

migration patterns [35, 50]. These projects were collected through

a process detailed in Section 4.1, and are manually confirmed to

have created an equivalent GHA file.
1

Through our Git and API-based analyses, we uncovered that an

average 71.20 days, and 2.75 commits are needed to reach a success-

ful build that corresponds to the equivalent GHA file, with some

projects needing up to 169 commits to reach this threshold. This

implies that the migration process is not self-evident and requires

multiple attempts over an important span of time. Furthermore, we

find that 48 projects seemingly abandoned the migration process

entirely even though they implemented equivalent GHA files, as

they never achieved a successful GHA workflow.

To better illustrate the complexity of the CI migration process,

we present an example of a migration from Travis CI to GHA from

the project VocableTrainer-Android in Figure 1.

language: android

android:

components:

#build tools

- build-tools-26.0.2

- android-26

- extra-android-m2repository

#emulators

- sys-img-armeabi-v7a-android-26

- sys-img-armeabi-v7a-android-19

script:

- ./gradlew clean build

before_cache:

- rm -f $HOME/.gradle/caches/

modules-2/modules-2.lock

- rm -fr $HOME/.gradle/caches/

*/plugin-resolution/

cache:

directories:

- $HOME/.gradle/caches/

- $HOME/.gradle/wrapper/

- $HOME/.android/build-cache

name: Java CI with Gradle

on:

push:

branches: [master]

pull_request:

branches: [master]

jobs:

build:

runs-on: ubuntu-latest

steps:

- uses: actions/checkout@v2

- name: Set up JDK 11

uses: actions/setup-java@v2

with:

java-version: '11'

distribution: 'adopt’

- name: Grant execute permission for

gradlew

run: chmod +x gradlew

- name: Build with Gradle

run: ./gradlew build

Travis CI File GitHub Ac ons File

Syntax with an equivalent Syntax with no direct equivalent

Figure 1: Example of Migration from Travis CI to GitHub Actions

The semantically-equivalent segments of the configuration are

marked with a + sign and linked with an arrow in Figure 1. However,

1
Defined as sharing 50% or more functionality, detailed in Section 4.1

the sections marked with an x sign, have no direct equivalents

between the two syntaxes.

The Travis CI configuration of this project requires specify-

ing android as a language and manually configuring the differ-

ent components required to run this project within the Travis

CI environment. However, that is not necessary within GHA, as

all of these components are provided by default when using the

ubuntu-latest environment.

While Travis CI automatically performs the checkout process

and makes Gradle executable, these steps need to be explicitly

performed in GHA. Travis CI workflow execution triggers are con-

figured via its website or performed via API requests [75]. But, GHA

developers need to specify them within the on section of the GHA

configuration file. In addition, while Travis CI provides a generic

cache configuration mechanism, GHA does not have a workflow-

wide directly equivalent syntax for caching. It relies on the con-

figuration of job-specific caches by using actions/cache@v3, or
package-manager-specific caching keywords. cache:gradle can
be added to this example to ensure caching.

Overall, this example illustrated how developers need to navigate

and avoid many pitfalls during the translation of a CI configuration

file, and how the lack of direct equivalents of some syntaxes hinders

the translation process.

3 BACKGROUND
3.1 Continuous Integration
Continuous Integration tools automate code integration by auto-

matically validating new commits via the execution of building,

testing, and other processes. Most CI tools are configured via Con-

figuration code files, and the execution of a CI tool is referred to as

a workflow.

GitHub Actions [32], Travis CI [76], Azure Pipelines [6], and

Circle CI [20] are among the most popular CI tools, and have many

commonalities. All four tools rely on YAML-based [72] files to store

the configuration of their workflows, with each relying on its own

Domain Specific Language (DSL). For all four tools, workflows

can be manually or automatically triggered by Git events such as

pull requests or pushes. Workflows are composed of one or more

jobs, which may be configured to execute in parallel in different

environments. For each of these tools, a job may be composed of

one or more steps that run sequentially, and it’s possible to use

variables to share information between the different steps and the

different jobs.

Even with the functional similarity of these tools, there are sig-

nificant conceptual and syntactical differences between them. For

example, while the Operating System for each GHA jobmay be spec-

ified using the runs-on [29] keyword, or the keyword vmImage [8]

for Azure Pipelines, or the image [18] keyword for CircleCI, Travis

CI uses the keyword os [73] to configure it for all stages and jobs.

While Travis CI has a specific phase install [74] within its life-

cycle to prepare the environment, GHA, Azure Pipelines, and Cir-

cleCI leave the specification of these phases to the developers. GHA

makes workflows and jobs reusable with the keyword uses [30],

so does Azure Pipelines with task [7], and CircleCI via orbs [19],
but, Travis CI does not offer an equivalent function.

2

3.2 Example-based Learning
A plausible approach for automatic CI system migration is to learn

from how prior developers migrate from source CI systems to target

CI systems and how they compose the structure of the CI config-

urations. Such migration and composition data can be extracted

from open-source projects hosted in GitHub. We utilized Associa-

tion rule mining [26, 46], an ML approach for finding interesting

associations among data. Specifically, we used the Apriori Rule

Mining [1] and Frequent-Tree Mining [16] algorithm to generate

rules for the target CI system.

3.2.1 Apriori Rule Mining. Apriori is an Association Rule Mining

(ARM) algorithm defined by Agrawal et al. [1]. It starts by finding

the frequent individual items in a database, also known as transac-

tion set, and expands them to item sets co-occurring together as

long as the appearance of those item sets is larger than a minimum

threshold specified by the user. Apriori then uses these frequent

item sets to generate association rules that reflect general trends in

the transactions set. Apriori rules are composed of a Left Hand Side

(LHS), the antecedent, also referred to as pre-condition, and a Right

Hand Side (RHS), the consequent. Within our work, the transac-

tion set as well as the resulting rules, are composed of subsets of

Abstract Syntax Trees (sub-ASTs).

3.2.2 Frequent Tree Mining and Tree Association Rules. Frequent
Tree mining empowers us to discover frequent maximal, induced,

ordered sub-trees with a specific minimum support from a group

of similar trees. We performed Frequent-Tree Mining via the

CMTreeMiner [16] algorithm on subsets of Abstract Syntax Trees

(ASTs). We grouped these sub-ASTs by their root nodes and passed

them as input to CMTreeMiner. Frequent Trees are discussed in

detail in Chi et al.’s work [17]. Using these trees, we were able to

extract Tree Association Rules (TAR), which we adapted from the

work of Mazuran et al. [51]. Similar to association rules, TARs are

composed of an antecedent and a consequent. Within our work,

we considered the antecedent to the root node as well as 50% of

the branches of a Frequent Trees, and the consequent being the re-

maining branches of the tree. Hence, a Frequent Tree may generate

multiple TARs during the execution of CIMig.

4 APPROACH
An overview of our approach is shown in Figure 2. We use Travis

CI and GHA syntaxes in the different illustrative examples.

4.1 Data Preparation
The proposed approach CIMig requires three sets of configuration

files. Set (1) containing Source CI files , Set (2) Target CI files, and Set

(3) of Source and Target CI file-pairs, with each pair containing two

files from different CI tools that implement similar functionality.

To prepare these files for the analyses we aim to perform on them,

we apply an abstraction process to them. This process parses these

files into equivalent ASTs, then transforms their leaves by matching

them with regular expressions that contain predefined keywords

to preserve the commands used within the configuration code files

while removing their project-specific parameters. To evaluate our

approach, we chose to focus on Java projects using Travis CI or GHA

as they are themost important subset of CI-usingOSS projects [9, 23,

41, 67, 68]. To concertize the data preparation phase in this context,

we discuss the processes we followed to create the 3 aforementioned

sets in this specific context. First, we collected the projects from two

sources: Google BigQuery and GitHub, the two most popular OSS

repository hosting sites [31, 48], after applying criteria on activity

and popularity as outlined by previous works [36, 45, 56], ensuring

that these projects have a size > 0 KB, have been active in 2021,

and have a popularity ≥ 5 stars or ≥ 5 forks. We collected 345228

projects after de-duplication. Then, we used Travis CI and GHA

APIs to establish a project’s usage of these CI tools, a more accurate

method of establishing adoption [67].

This allowed us to build these three project sets:

• Travis CI-Only projects: 13403, containing Set (1) or Set (2),

depending on Translation direction.

• GHA-only projects: 15888, containing Set (1) or Set (2), de-

pending on Translation direction.

• Travis CI and GHA projects: 5138, 1252 after filtering, con-

taining Set (3).

We used the first two projects sets to extract Set (1) and Set (2)

for Task B in 4.2, to extract Frequent Trees for both Travis CI and

GHA. We used the third project set to perform migration effort

analysis discussed in Section 2, and to extract Set (3) of semantically

equivalent configuration code file tuples for Tasks A-1 andA-2 in 4.2.

It’s important to note that while Travis CI uses one configuration

code file, GHA may use multiple files, hence why we’re extracting

tuples from a project, as they contain one Travis file, and may

contain more than one GHA file. We applied the following filtering

process to find these tuples. First, we performed a git-history-based

analysis to extract the Travis CI and GHA file tuple which contains

the file pair composed of the Travis CI and one of the GHA files with

the highest cosine similarity [69], a metric used within previous

works [15, 81] to determine source code and configuration code

similarity, and which have passing build statuses as confirmed by

the GHA and Travis CI APIs. We eliminated 1748 projects as they

did not have configuration files for one or both tools in their history,

likely due to Git rewritings [12], and 919 projects, due to their tuples

having a maximum cosine similarity of 0.1 or less.

Second, to confirm the semantic equivalence of the remaining

tuples from the third set, two co-authors manually analyzed file

tuples from 2471 projects. As mentioned earlier, the extracted file

tuple may contain more than one GHA file. Hence, the developers

performed a pairwise comparison between the Travis file and each

of the GHA files in each tuple, starting with the longest GHA file.

To save time, they stopped when reaching the minimum equiva-

lency criterion. We opted for this permissive semantic equivalence

criterion after perceiving that very few projects completely re-

implement the same functionality between GHA and Travis CI,

which is consistent with previous findings [50]. After applying

these filtering processes, only 1252 projects met these criteria.

Similar to other works that tackled code translation [2, 66], we

split third set into two subsets, following the 80%-20% ratio, a "train-

ing" set of file tuples from 1001 projects and a "test" set of file tuples

from 251 projects. The project splitting process was random to

maintain representativeness. Only the training set is used for Tasks

A-1 and A2, while the testing set is reserved for the evaluation of

the approach. Since Tasks A-1 and A2 of CIMig are designed to

3

Source-Target

CI le-pairs

Data Collec on

Transla on

rules

Source CI

Frequent Trees
Target CI

Frequent Trees

Source CI File

Hierarchiza on

rules

Apriori Rule

Mining

Frequent-Tree

Mining

Transla on

Process

Source CI les

Target CI les

Target CI File

1 - Abstrac on

and Parsing

2 - Source to Target

Transla on and Target

AST Composi on

3- Target AST

Enrichment and

Hierarchiza on

4- Source to Target

Parameter Transfer

Figure 2: Overview of CIMig when used to migrate between Travis CI and GHA

learn on file-pairs, we transform each tuple into pairs where the

same Travis CI file is paired with the multiple GHA files.

4.2 Training CIMig
4.2.1 Task A: Apriori Rule Mining Process. The goal of this
process is to find rules that allow us to translate Source CI syntax to

Target CI Syntax, which we refer to as 1○ Translation Rule Mining

as well as rules that link different parts of Source CI syntax to each

other, referred to as 2○ Hierarchization Rule Mining. This process

is applied to the Source-Target CI file pairs set.

{"children":[{"children":[],"type":mvn-cmd},

{"children":[],"type":mvn-cmd}],"type":script}

{"children":[{"children":[],"type":false}],"type":sudo}

{"children":[{"children":[],"type":Java}],"type":Language}

Travis File

Language

Java

Sudo

False

Script

Mvn-cmd

Mvn-cmd

Figure 3: Travis CI H-2 AST Extraction Example

Task A-1: Translation Rule Mining. To extract translation rules

to guide our translation from the Source CI to the Target CI tool,

we analyze the previously-prepared file pairs.

First, after the abstraction of these files as detailed within Sec-

tion 4.1, we parse them into ASTs. Then, for each pair of ASTs, we

extract the sub-ASTs of height equal to 2 starting from the leaves of

the ASTs, which we refer to as H-2 ASTs within this work, and we

represent them in a textual format. We decided on this height after

a process of parameter tuning, detailed in the Parameter Tuning

paragraph of 4.2.3. An example of the application of the abstraction

and H-2 collection processes is shown in Figure 3. For each file pair

𝑖 , we obtain a set of H-2 ASTs extracted from the Source CI file:

𝑆𝑅𝐶 − 𝐻2𝑖 , and a set of H-2 ASTs extracted from the Target CI file

𝑇𝐺𝑇 − 𝐻2𝑖

Second, for each file pair, we apply Cartesian product, used

in other code-translation works [71], to create a transaction set

𝑇𝑖 = 𝑆𝑅𝐶 − 𝐻2𝑖
>

𝑇𝐺𝑇 − 𝐻2𝑖 We chose this product since the

alignment of the configuration code files from different tools is not

possible in many of cases, as different configuration parameters

can be at different locations within the file pairs due to some tools,

such as GHA, employing a more flexible file structure than others.

Third, all the transaction sets generated from the file pairs are

grouped into one large set 𝑇𝑡𝑟𝑎𝑛𝑠𝑙 =
∑𝑁
𝑖=1𝑇𝑖 on which we perform

our Apriori-based Association Rule Mining (ARM) [1], previously

detailed in Section 3.2. This rule-mining was used in other works

tackling code translation and configuration mapping such as that

of Hora et al. [42]

These rules are evaluated in terms of their support [1], confi-

dence [1], and lift [52], with higher values indicated higher quality

rules. Support reflects how often the item set appears together,

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑆𝑅𝐶 ⇒ 𝑇𝐺𝑇) = 𝑃 (𝑆𝑅𝐶 ∪𝑇𝐺𝑇), where 𝑆𝑅𝐶 is a specific

H-2 AST from Source CI,𝑇𝐺𝑇 is a specific H-2 AST from Target CI.

Confidence reflects how often the rule is correct, 𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝑆𝑅𝐶 ⇒
𝑇𝐺𝑇) = 𝑃 (𝑆𝑅𝐶∪𝑇𝐺𝑇)/𝑃 (𝑆𝑅𝐶). Lift is the ratio of the actual confi-

dence of a rule to its expected confidence, 𝑙𝑖 𝑓 𝑡 (𝑆𝑅𝐶 ⇒ 𝑇𝐺𝑇) =
𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝑆𝑅𝐶⇒𝑇𝐺𝑇)/𝑃 (𝑇𝐺𝑇) . We specified a minimum support of

10
−6
, a value determined via a process detailed in the Parameter

Tuning paragraph of 4.2.3.

Fourth, we filter the generated rules to keep those with the

format of SRC-CI-H2-AST⇒ TGT-CI-H2-AST, thus creating the

Rule-Set 𝑅.

We calculate the confidence, lift and support products of these

rules with their flipped counterparts, of the format TGT-H2-AST

⇒ SRC-CI-H2-AST, to substantiate the equivalence between the

two H-2 ASTs. This is important since one Source CI H-2 AST may

have multiple possible equivalent Target H-2 ASTs, and vice-versa.

Finally, we automatically bifurcate 𝑅 into two sets, based on

whether the cosine similarity of the LHS’s leaves and the RHS’s

leaves was above 0.5. These sets are:

𝑅𝑠𝑖𝑚 : Similarity-Based rule-set.

𝑅𝑠𝑡𝑎𝑡 : Statistical-Based rule-set.

We opted for this bifurcation as we anticipate a number of spuri-

ous rules will be present in 𝑅 due to the application of the Cartesian

product. We choose to apply 𝑅𝑠𝑡𝑎𝑡 in the translation process, after

applying additional constraints, as it may still contain some useful

non-textually-similar rules. We detail these constraints and the

translation process in Section 4.3.

Task A-2: Hierarchization Rule Mining. The translation rules

only capture two levels of the entire Source CI AST to find its equiv-

alent Target CI AST. However, CI ASTs often contain 3 or more

levels. Thus, multiple H-2 ASTs can be linked with a variety of

intermediate nodes on multiple levels. To better infer the intermedi-

ate nodes within a Target AST, and ensure the correct composition

4

of the generated Target CI file, we created a set of hierarchization

rules via the following steps.

First, from each Target CI file 𝑖 , we built a transaction set 𝑇𝐻𝑖

of the extracted H-2 AST nodes and their parents, then we built

𝑇𝐻 =
∑𝑁
𝑖=1𝑇𝐻𝑖 on which we ran the Apriori algorithm with a

minimum support of 10
−6

to generate the hierarchization rules.

Similar to their translation counterparts, the rules were filtered

to keep those of the desired format of H-2-AST-Child⇒ Parent.

These rules allow us to find the direct parents of an H-2 AST, thus

allowing us to infer some intermediate nodes within the complete

generated AST of our Generated Target CI file. In addition, their

confidence, lift, and support products were also calculated.

4.2.2 Task B: Frequent-Tree Mining Process. While our trans-

lation and hierarchization rules allow us to translate H-2 ASTs and

find their direct ancestors, they do not capture patterns that link

multiple H-2 CI ASTs to each other or patterns that span more than

2 levels. Such patterns may allow us to add beneficial sub-ASTs

via inferring which sub-ASTs occur together, thus allowing us to

address syntax that is not directly translatable from the Source CI

syntax or syntax that does not have a direct equivalent. To capture

these useful patterns, we perform Frequent-Tree Mining, detailed

in Section 3.2, on the Source CI files set, and the Target CI files set.

After abstracting these files, we extract sub-ASTs originating from

each of their intermediate nodes. This mining process empowered

us to discover a set of Frequent sub-ASTs, which we refer to as 𝐹𝑇 ,

where each tree has a minimum support of 5%, a value we chose

via parameter tuning, detailed in the Parameter Tuning paragraph

of 4.2.3.

Root is steps, Children contain [{"children":[],"type":mvn-cmd},

{"children":[],"type":mvn-cmd}]}

steps

Mvn-cmd

ac ons/setup-java@version

uses with

Java-version

run

Mvn-cmd

run

Children should contain {"children":[{"children":[],

"type":javaversion}],"type":with},{"children":[{"children":[],

"type":actions/setup-java@version}],"type":uses}

Figure 4: Example of Frequent Tree mined from GHA and Generated
TAR

These Frequent Trees we extracted capture sub-ASTs which co-

occur frequently within the files we used as input, and an example

of such a Frequent Tree containing a beneficial pattern, which we

extracted by mining GHA files, is shown within Figure 4. This tree

contains the syntax used to setup and configure Java within a spe-

cific job, as well as the usage of Maven commands, signaling that

these two elements are likely to occur together. As detailed in Sec-

tion 3.2, these Frequent Trees generate multiple Tree Association

Rules (TAR), and an example TAR is shown in the figure as well,

where the antecedent is the root node steps along with the usage of

Maven commands within an AST, and the consequent is the setup

and configuration of Java. Such co-occurring H2-ASTs can’t be be

identified by translation and hierarchization rules. As illustrated

by this example, the configuration of Java is a beneficial addition

to our translation. Furthermore, TARs generally add more interme-

diate nodes to an AST file, which are useful for the hierarchization

process.

4.2.3 Parameter Tuning for Task A & B. While designing the

Apriori Rule Mining and Frequent Tree Mining processes, we fol-

lowed an extensive parameter tuning process. Due to the prevalence

of the migration from Travis CI to GHA, we focused on that trans-

lation scenario during this process. For the Apriori Rule Mining

tasks, while deciding on the optimal number of levels to capture

within our translation rules, our goal was to generate rules that

strike a good balance between conservativeness and generality,

as higher-order rules may less easily accommodate the migration

with new CI workflow steps not seen during the training process,

while lower order rules may generate too many rules that are prone

to noisiness. To determine the ideal number of levels to consider,

we mined rules with different sub-ASTs of different heights. We

specifically evaluated 3 different types of rules: H-2 rules, with two

levels on both sides of the rules, Mixed rules, with three levels on

one side, two levels on the other side of the rule, and H-3 rules,

with three levels on both sides of the rules. For each type of rule,

we mined Travis CI => GitHub Actions rules, and then performed

an evaluation of these rule sets against hand-crafted ones. While

Sim-based H-2 and Stat-based H-2 rules had F-1 scores of 71.25%

and 31.85%, Sim-based Mixed and Stat-based Mixed rules had F-1

scores of 60.75% and 8.10%, and Sim-based H-3 and Stat-based H-3

rules had F-1 scores of 33.33% and 10.26%. Hence, it’s clear that

H-2 rule-set has significantly better rules, while considering higher-

level rules causes a precipitous drop in rule quality. Furthermore,

while performing the rule mining process, we experimented with

different values for the minimum support, and opted to use 10
−6

as it allows the generation of the maximum number of rules on the

development machine, described in 5.2, without causing memory

consumption issues related to the Apriori algorithm [1]

Concerning Frequent Tree Mining, we again aimed to strike a

balance between conservativeness and generality, and to operate

within the constraints of time and memory needed for the mining

process. Hence, we attempted the mining process with multiple

minimum support values ranging from 1% to 75%. Of the values in

this range, we found that a minimum support of 5% generated a

sufficient number of trees, consisting of 2664 GHA Frequent Trees

and 524 Travis CI Frequent Trees, within an amount of time detailed

in 5.2, while higher support values resulted in a much smaller

number of Frequent-trees, especially for Travis CI. For example,

10% minimum support resulted in the discovery of only 1006 GHA

trees and 175 Travis CI trees, and 25% resulted in the discovery

of only 191 GHA trees and 40 Travis CI trees, thus capturing far

fewer patterns. Frequent TreeMiningwithminimum support values

lower than 5% either went on indefinitely, or took much longer

time and resulted in few additional trees, most of which were not

generalizable.

4.3 Using CIMig
The four steps of the approach that we follow to translate files

from the Source CI syntax to the Target CI syntax are illustrated

in Figure 2. Within this section, we detail the different steps of

the translation process and illustrate them with an example of

5

a translation from Travis CI to GHA. Similar to GitHub Actions

Importer, we designed CIMig to use one file as input and produce

one file as output, as the splitting of CI configuration across all files

is optional in some CI tools such as GHA, and not at all supported

by other tools such as Travis CI.

Travis- le

language

java
sudo

bool

oraclejdkX

Jdk A er_success

mvn-cmd

language: java

sudo: false

jdk:

oraclejdk7

after_success:

mvn clean cobertura:cobertura coveralls:report

Figure 5: Example of Travis CI File and its corresponding AST

4.3.1 Step 1: Abstraction and Parsing. First, the configuration code

of the source file is processed with the same abstraction process

applied during the training phase, described in Section 4.1, and then

parsed to an Abstract Syntax Tree (AST) from which we collect the

H-2 ASTs. The parameters of the commands within these nodes,

which are removed in the abstraction process, are stored for usage

in a later step. An example of a Travis CI configuration file and its

equivalent abstracted AST is shown within Figure 5.

run

mvnclean
cobertura:cobertura

coveralls:report

steps

build

jobson

Push

name

Placeholder

GHA File

Ubuntu-latest

nameRuns-on

Placeholder

action/setup-java@version

uses
with

Java-version

distribution

Java- version

${{ matrix.java}}

branches

Branch-name

${{ matrix.java}}

Basic GHA AST

TAR Enrichment

Sim-based Translation

Stat-based Translation

Hierchization

Parameter Transfer

Figure 6: Example of a translated GHA AST

4.3.2 Step 2: Source to Target Translation and Target AST Composi-
tion. This step is composed of 3 phases: Initialization, Sim-based

Translation, and Stat-based Translation. We also detail the Insertion

Process we follow during the latter two phases.

Step 2.1: Initialization. First, we initialize a Target CI seed tree
before the translation process begins. This AST is created from Fre-

quent Trees found within the Target CI files, and that was verified

to follow the correct structure of the Target CI tool. An example

of a basic GHA AST composed of a seed tree is shown in black

in Figure 6. This AST forms the basis of the file we’re attempting

to create as an end result of our translation process, and we refer

to this file as generated equivalent Target CI file.

{"children":[{"children":[],"type":

mvn-cmd}],"type":After_success}}

{"children":[{"children":[],

"type":mvn-cmd}],"type":run}

Figure 7: Example of Sim-based translation rule

Step 2.2: Sim-based Translation. Second, we attempt a Sim-based

translation, which makes use of Sim-based rules, detailed in Task

A-1 of Section 4.2.1. For each Source CI H-2 AST collected within

the previous step, we collect all the Sim-based rules with an LHS

that matches it. Then, we extract the best rule according to its

confidence product and apply it to generate the corresponding

Target CI H-2 AST, which is then inserted within the AST of the

generated equivalent Target CI file. Figure 7 shows an example

of such a translation rule that applies to the Travis CI file shown

in Figure 5. The usage of its results in a generated equivalent GHA

file is shown in green in Figure 6. These rules effectively translate

syntax that is directly equivalent between Source and Target CI

systems and has textual similarity.

{"children":[{"children":[],

"type":java}],"type":language}}

{"children":[{"children":[],"type":

${{matrix.java}}}],"type":Java-version}

Figure 8: Example of Stat-based translation rule

Step 2.3: Stat-based Translation. Third, we attempt Stat-based

translation. For each H-2 AST not translated within the previous

step, we collect all the Stat-based rules with an LHS that matches

it. However, we look for certain prerequisites before attempting to

apply the Stat-based rules. For each rule, we collected the Frequent

Trees of the Source CI tool, which contain the LHS of this rule, and

the Target CI Frequent Trees, which contain the RHS of this rule.
2

CIMig analyzes each matched rule in descending order of their

confidence product. It ascertains whether at least one Source CI

Frequent-Tree, containing the LHS of the Stat-based rule, is present

within the Source CI file’s AST. It also verifies if a Frequent-tree

from the Target CI tool, containing the RHS of the Stat-based rule,

has at least 50% of its branches within this AST. If both conditions

are met, the rule is applied and the corresponding Target CI H-2

AST is generated and inserted within the AST of the generated

equivalent Target CI file. Figure 8 shows an example of such a

translation rule that applies to the Travis CI file shown in Figure 5.

The usage of its results in a generated equivalent GHA file is shown

in red in Figure 6. This type of rule is especially useful for the non-

directly-equivalent syntax and directly-equivalent syntax which

does not have textually similar leaves, such as the translation of

the language:android segment from the motivational example

in Figure 1.

Insertion Process. In this paragraph, we detail the insertion pro-

cess that we followed during the Sim-based Translation and the

Stat-based Translation. CIMig performs a DFS-based search within

the generated equivalent Target CI file AST to find the deepest node

that matches the parent node of the new H-2 AST, which is then

used as the point of insertion. The H-2 AST’s children are inserted

as the matching node’s siblings. The design of this process was

guided by observations of the YAML syntax, which is used by many

CI tools, as intermediary nodes do not occur multiple times on the

same level within a YAML file. If no matching nodes are found, the

new H-2 AST is assumed to be a direct descendant of the file’s root

node and is accordingly inserted at the root of the file.

2
This step is independent of the translation process, it is pre-computed to help acceler-

ate it.

6

4.3.3 Step 3: Target AST Enrichment and Hierarchization.

Step 3.1: AST Enrichment with TARs. to improve the structure

of our generated equivalent Target CI file, we make use of TARs

contained within the previously-mined Frequent Trees, detailed

in Task B of Section 4.2.1. TARs can add beneficial patterns found

within CI files of the same type, as well as intermediate nodes and

structures that can be used to hierarchize the previously generated

H-2 ASTs. We attempt to match each of the Target CI tool’s TARs

with the AST of the generated equivalent Target CI file. If a TAR is

applicable, we insert the AST branches it generates while preserving

any existing nodeswithin the file. an example of an AST Enrichment

is shown in blue in Figure 6 .

Step 3.2: AST Hierarchization. The goal of the hierarchization
process is to improve the placement of our H-2 ASTs, and the

internal structure of our generated equivalent Target CI file’s AST.

We apply Algorithm 1 to achieve this process, which employs the

hierarchization rules, detailed Task A-2 of in Section 4.2.1. First, as

shown in lines 12-13, for each H-2-AST we inserted at the root, we

attempt to apply the hierarchization process. Within this paragraph,

we refer to the H-2 AST we’re attempting to hierarchize as the

current H-2 AST. For each current H-2 AST, we call the function

DFS_Based_Insert, detailed in lines 1-11, where we perform a DFS-

based search to find the deepest node that matches the current H-2

AST’s parent type. If a match is found, we insert the current H-2

AST’s children as children of the matching node and remove the

current H-2 AST from the root node. This re-application of the same

insertion process we followed in the previously-described Step 2
allows us to take advantage of the new intermediate nodes added

via the TAR enrichment process that we previously applied. If no

matches are found, we collect all the Target CI hierarchization rules

the LHS of which matches the current H-2 AST and we apply the

hierarchical rule with the highest confidence product, as detailed in

lines 14-21. Lines 22-30, show how we use this rule: we produce a

new node using the new parent type, and add the current H-2 AST

to its children. We then pass this new node as a search target to

DFS_Based_Insert. If a node with the same type as our new parent is

found within our Target CI file AST, we insert the current H-2 AST

as one of its children. If no matches are found, the newly generated

node is inserted a child of the root of the generated equivalent

Target CI file’s AST.

An example of a hierarchization rule is shown in Figure 9. It

applies to the generated equivalent GHA file we’re constructing

in Figure 6, where the usage of this rule’s results is shown in yellow.

This example also illustrates how the application of TARs allowed

us to add new intermediate nodes, which were then useful during

the hierarchization process.

{"children":[{"children":[],"type":

${{ matrix.java}}}],"type":Java-version}
with

Figure 9: Example of Hierarchization rule

4.3.4 Step 4: Source to Target AST Parameter Transfer. Before ap-
plying the abstraction process in Section 4.3.1, we stored the pa-

rameters that correspond to the different commands contained in

the H-2 ASTs we extracted. Throughout the different steps of our

translation process, we keep track of which parameters correspond

to each collected H-2 Source CI AST, as well as which generated

H-2 Target CI AST corresponds to which H-2 Source CI AST. The

generated Target CI ASTs are abstract due to the nature of the rule

generation process, making the parameter transfer to them a direct

process, where we copy the parameters to the new commands while

preserving their order. Hence, we end up with a generated equiva-

lent Target CI file that contains commands identical to their Source

CI counterpart. An example of the results of this step is illustrated

within the underlined node in the AST shown in Figure 6, where

the parameters of the maven command were transferred from the

original Travis CI AST. The generated equivalent Target CI file AST

is finally transformed into a regular YAML file that can be used by

the developers in their Target CI environment.

Algorithm 1 Hierarchization Algorithm

1: function DFS_Based_Insert(𝐶𝐼_𝐻2_𝐴𝑆𝑇 ,𝐶𝐼_𝐴𝑆𝑇)

2: 𝑇 ← 𝐶𝐼_𝐻2_𝐴𝑆𝑇 .𝑃𝑎𝑟𝑒𝑛𝑡_𝑁𝑜𝑑𝑒.𝑇 𝑦𝑝𝑒

3: 𝐼𝑛𝑠𝑒𝑟𝑡_𝑁𝑜𝑑𝑒 ← DFS Based Search(𝐶𝐼_𝐴𝑆𝑇,𝑇)

4: if 𝐼𝑛𝑠𝑒𝑟𝑡_𝑁𝑜𝑑𝑒 ≠ 𝑁𝑈𝐿𝐿 then
5: 𝐼𝑛𝑠𝑒𝑟𝑡_𝑁𝑜𝑑𝑒.𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← (𝐼𝑛𝑠𝑒𝑟𝑡_𝑁𝑜𝑑𝑒.𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛_𝐴𝑆𝑇 ∪

𝐶𝐼_𝐻2_𝐴𝑆𝑇 .𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛)
6: 𝐶𝐼_𝐴𝑆𝑇 .𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← (𝐶𝐼_𝐴𝑆𝑇 .𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 \𝐶𝐼_𝐻2_𝐴𝑆𝑇)
7: return True

8: else
9: return False

10: end if
11: end function
12: for all𝐶𝐼_𝐻2_𝐴𝑆𝑇 ∈ 𝐶𝐼_𝐴𝑆𝑇 .𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
13: if DFS_Based_Insert(𝐶𝐼_𝐻2_𝐴𝑆𝑇 ,𝐶𝐼_𝐴𝑆𝑇) = False then
14: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑_𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ_𝑅𝑢𝑙𝑒𝑠 ← ∅
15: for all𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦_𝑅𝑢𝑙𝑒 ∈ 𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦_𝑅𝑢𝑙𝑒𝑠 do
16: if 𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦_𝑅𝑢𝑙𝑒.𝐿𝐻𝑆 = 𝐶𝐼_𝐻2_𝐴𝑆𝑇 then
17: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑_𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ_𝑅𝑢𝑙𝑒𝑠 ← (𝑀𝑎𝑡𝑐ℎ𝑒𝑑_𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ_𝑅𝑢𝑙𝑒𝑠 ∪

𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦_𝑅𝑢𝑙𝑒)
18: end if
19: end for
20: if 𝑀𝑎𝑡𝑐ℎ𝑒𝑑_𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ_𝑅𝑢𝑙𝑒𝑠.𝑠𝑖𝑧𝑒 > 0 then
21: 𝐵𝑒𝑠𝑡_𝑅𝑢𝑙𝑒 ← 𝐵𝑒𝑠𝑡 (𝑀𝑎𝑡𝑐ℎ𝑒𝑑_𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ_𝑅𝑢𝑙𝑒𝑠)
22: 𝑁𝑒𝑤_𝐶𝐼_𝐴𝑆𝑇 ← Init(𝐵𝑒𝑠𝑡_𝑅𝑢𝑙𝑒.𝑃𝑎𝑟𝑒𝑛𝑡_𝑁𝑜𝑑𝑒.𝑇 𝑦𝑝𝑒)

23: 𝑁𝑒𝑤_𝐶𝐼_𝐴𝑆𝑇 .𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← (𝑁𝑒𝑤_𝐶𝐼_𝐴𝑆𝑇 .𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ∪𝐶𝐼_𝐻2_𝐴𝑆𝑇)
24: 𝐶𝐼_𝐴𝑆𝑇 .𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← (𝐶𝐼_𝐴𝑆𝑇 .𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 \𝐶𝐼_𝐻2_𝐴𝑆𝑇)
25: if DFS_Based_Insert(𝑁𝑒𝑤_𝐶𝐼_𝐴𝑆𝑇 ,𝐶𝐼_𝐴𝑆𝑇) = False then
26: 𝐶𝐼_𝐴𝑆𝑇 .𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← (𝐶𝐼_𝐴𝑆𝑇 .𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ∪ 𝑁𝑒𝑤_𝐶𝐼_𝐴𝑆𝑇)
27: end if
28: end if
29: end if
30: end for

5 EVALUATION
5.1 RQ1: How effective is CIMig?
To measure the effectiveness of CIMig, we performed two-pronged

evaluation: automatic translation evaluation and user study.

Automatic Translation Evaluation: To evaluate the performance of

the automatic translation, we applied CIMig on "test-set" of 251 that

we discussed in Section 4.1. We evaluated two aspects of the auto-

matic translation. First, we calculated the percentage of automated

translations, which quantifies how many of the H-2 ASTs collected

from each source CI file are matched and translated by CIMig. Sec-

ond, we adopted Cosine similarity [69] and CrystalBLEU [24] to

measure the similarity between CIMig generated CI configuration

files and developer-written Target CI configuration files. We chose

these two metrics due to their wide usage in literature. Cosine sim-

ilarity is known for its versatility and applicability in source code

migration research works [15, 59, 64, 70, 81], and CrystalBLEU

7

is designed for source code similarity and was utilized in code

generation works [21, 47, 83] and code migration works [44, 63].

For comparative analysis, we compared the performance of CIMig

with that of GitHub Actions Importer, the official tool from GitHub

Actions [33], using these two metrics.

User Study:Weperformed a user study to evaluate the practicality

of CIMig. The study was done with five participants, out of 15 ini-

tially contacted. They had software development or research experi-

ence ranging from 3 to 7 years, CI experience including GHA rang-

ing from 1month to 1 year. Each participant was tasked with migrat-

ing five Travis CI projects to GHA manually. They also migrated

these projects semi-automatically twice, with one migration using a

configuration file generated by CIMig and another with GitHub Ac-

tions Importer. The five projects are from the Travis CI-only set, and

we selected them using popularity (≥ 5 stars or ≥ 5 forks), project

activity (> 200 commits made), and project freshness (updated June

2023 or later) following criteria in a similar works [36, 45, 56]. The

five projects are hutool [22], WxJava [79], hsweb-framework [43],

elasticsearch-sql [62], TelegramBots [10]. For the study, we

only considered Travis CI to GHA migrations as GitHub Actions

Importer only supports Travis CI to GHA. All configuration files

generated by CIMig and GitHubActions Importer were anonymized

before being shared with the participants to avoid bias. For each mi-

gration task, the participants were asked to achieve a "First Passing

Workflow", a workflow that implements minimal CI functionality,

and a "FinalWorkflow" which implements all CI functionality that is

available in Source CI configuration. During the study, wemeasured

how much time can be saved via the semi-automatic migration ap-

proaches using CIMig and GitHub Actions Importer generated files.

Also, we received ratings for the usefulness of the generated files

by each tool from participants using a Likert scale [3] ranging from

1 to 5, with 1 being "not at all useful" and 5 being "incredibly useful".

Our full study guide and the full reports are available at [5].

5.2 RQ2: What is the CIMig Execution Cost?
To estimate the time consumption of the training and translation

processes, we programmatically measured the time it took to exe-

cute each training task, as well as the execution times for each trans-

lation performed on our test set, during the experiment execution.

We performed our experiment on a machine running Ubuntu 22.04

and configured with an Intel Xeon CPU with 6 cores/12 threads

and 32 GB of RAM.

5.3 RQ3: What are the Shortcomings of CIMig?
To find the shortcomings of the results of CIMig, we asked co-

authors who did not work on developing CIMig to manually eval-

uate the results of our experiments by providing detailed reports

on the different issues they noticed for the worst 25 generated

translations from Travis CI to GHA, and the worst 25 generated

translations from GHA to Travis CI, as determined by Cosine simi-

larity. We then grouped similar issues into 3 main categories and

reported the number of translations of each type that possessed

that flaw.

6 RESULTS
6.1 RQ1: CIMig Migration Effectiveness

Figure 10: Percentage of H-2 ASTs translated per-file

6.1.1 Automatic Translation Evaluation Results. As the translation
percentage values illustrate within Figure 10, for the 251 projects

composing the test set of GHA-Travis CI equivalent set, our tech-

nique is effective at translating an average of 70.82% and a median

of 75% of the H-2 ASTs extracted from a Travis CI file. Furthermore,

CIMig translates an average of 51.86% and a median of 53.13% of a

GHA H-2 ASTs to Travis CI syntax.

0.51
0.45

0.35

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CIMig - Travis CI to GHA GHA - Importer Travis CI to GHA

CIMig GHA to Travis CI GHA Importer- GHA to Travis CI

Figure 11: Cosine Similarity score of the Generated files.

Moving on to the translation quality, both Cosine Similarity

and CrystalBLEU scores, illustrated within Figure 11 and Figure 12

respectively, and measured using the test set, display averages of

0.51 and 0.044 for the translation from Travis CI to GHA. The

translation from GHA to Travis CI has averages of 0.35 and 0.036,

respectively.

0.044
0.064

0.036
00

0.05

0.1

0.15

0.2

0.25

CIMig - Travis to GHA GHA Importer - Travis to GHA

CIMig - GHA to Travis CI GHA Importer - GHA to Travis CI

Figure 12: CrystalBLEU score of the Generated files.

Using the CrystalBLEUmetric, it’s clear that the generated equiv-

alent GHA files and the equivalent Travis CI files show a good

similarity to their developer-crafted baselines, especially when

considering the works of Eghbali & Pradel. [24] For CrystalBLEU,

8

where values around 0.05 were considered indicative of context-

preservation and feature-parity between the code pairs. Further-

more, Using both Cosine Similarity and CrystalBLEU to compare

the results from CIMig to those obtained by GitHub Actions Im-

porter for the scenario of translating Travis CI files to GHA files,

it’s clear that CIMig’s generated files are as similar to the developer-

provided files. This helps substantiate the quality of our generated

files, especially since the official tool relies on hand-crafted specific

rules. While CIMig supports the translation from GHA to Travis

CI, GitHub Actions Importer does not, nor does any current tool,

hence why there is no baseline for comparison in that case.

We find it important to mention that a considerable amount of

GHA syntax does not have a Travis CI equivalent, mainly because

the oft-used Actions in GHA do not have a direct equivalent in

Travis CI, as it doesn’t support reusable workflows, making their

translation difficult, explaining the lower results obtained when

translating GHA files to Travis CI. It’s also notable that GHA-Travis

CI equivalent set contains GHA and Travis CI tuples that have as

little as 50% functionality in common, meaning that the generated

equivalent GHA file or generated equivalent Travis CI file may only

achieve a maximum similarity of 50%.

Overall, our results further support the confidence in the quality

of the equivalent Target CI file generated by CIMig and validate that

they implement a sizeable percentage of the functionality originally

found in the Source CI file. We believe the files CIMig generates can

form a good basis for developers to build on and help accelerate

the migration process of their infrastructure, and we attempt to

confirm this in the following section.

6.1.2 User Study. Table 1 shows the results of the user study con-

ducted following Section 5.1. Column 1 shows the name of projects

used for the migration from Travis CI to GHA in the study. The

First Workflow (column 2-6) shows the time that developers spent

on Manual migration and migrations using CIMig and GitHub Ac-

tions Importer to reach a First passing workflow. For the results of

CIMig and GitHub Actions Importer, we show how much time was

saved in comparison to Manual migration (column 4 and column

6). Similarly, the Final Workflow (column 7-11) shows measures

of developer time taken to reach a Final passing workflow for the

same 3 migration types. Finally, Avg. User Rating (column 12-13)

contains the average usefulness scores from 1 to 5, assigned by the

developers to the files from CIMig and GitHub Actions Importer.

The results show that using the CIMig or GitHub Actions Im-

porter helps developers reach both the First-passing workflow and

the Final-passing workflow much faster than manual migrations.

Indeed, CIMig reduced the Manual migration time by 16% to 86%,

and GitHub Actions Importer reduced it by 22% to 84% for reaching

the First-passing workflow. We see similar reductions as well in

the migration time for the Final-passing workflow. In terms of user

ratings, CIMig has an average of 3.04 user rating, and GitHub Ac-

tions Importer has a higher average user rating of 4.16. We notice

similar user ratings for the two tools for the Hsweb-framework
and Telegram Bots projects. In both projects, CIMig also provides

higher reduction in migration time than GitHub Actions Importer.

Two developers mentioned in their reports that the files provided

by CIMig were easier to extend for these 2 projects than GitHub

Actions Importer’s files, where GitHub Actions Importer’s attempts

to translate some syntax results in more complicated configuration

files. In summary, CIMig shows lower reduction rate than GitHub

Actions Importer on three projects and higher reduction rate on

two projects. User ratings tend to follow the reduction rates, with

ratings for CIMig being lower than GitHub Actions Importer. Over-

all, the results confirm that the files generated by CIMig are usable

in the GHA environment with minor modifications, and help save

on migration time. Furthermore, CIMig leverages mining processes

from existing files, making it easy to extend and adapt to new syn-

tax, as shown via GHA to Travis CI migration. On the other hand,

GitHub Actions Importer is built using manual-mapped rules, and

only supports Travis CI to GHA migration, limiting its extension to

other scenarios. Hence, CIMig provides more usefulness in terms of

supporting more migration scenarios with comparable performance

to the specialized migration tool.

6.2 RQ2: CIMig Execution Cost
Concerning the time needed to perform the translation of GHA

files to Travis CI the average execution time of CIMig is 719.85

milliseconds, and the median is 705 milliseconds. Meanwhile, the

average execution time of GitHub Actions Importer is 1553.31 mil-

liseconds, and the median is 1503.38, for the same process. While

both executions times are acceptable [60], CIMig is faster than

GitHub Actions Importer . CIMig has acceptable times for trans-

lating GHA syntax to Travis CI as well, with a median execution

time of 797 milliseconds, and an average translation time of 1235.46

milliseconds.

Concerning the different processes of the training phase, they

are only executed once and are independent of the translation

process, making their time consumption less important. During

the rule mining phase, detailed in Section 4.2.1, we executed 2

Apriori-based ARM operations: Travis CI to GHA translation rules,

which took 45947 milliseconds to execute, and GHA hierarchization

rules which took 22022 milliseconds to execute. These times were

nearly identical when mining the translation rules GHA to Travis

CI, as well as the generation of Travis CI hierarchization rules. The

most time-consuming process we designed was the detection of

which GHA and Travis CI Frequent Trees match with the Stat-

Based rules, which took 1625773 milliseconds (around 27 minutes),

despite a parallelized implementation that took advantage of all

CPU threads available. This is however not surprising as there is a

total of 99586 Stat-Based rules for each direction, along with 524

Travis CI Frequent Trees and 2664 GHA Frequent Trees.

We performed two Frequent-Trees mining operations: one on

Travis CI files, which took 1211342 milliseconds (around 20 min-

utes), and one on GitHub Actions files which took 257445 seconds

(around 71 hours). The latter’s much higher time consumption can

be attributed to a bigger number of unique root nodes at which we

attempted to detect Frequent-Trees, as well as the larger and more

complex ASTs of GHA files. Overall, we believe CIMig time con-

sumption during the training phase also remains within acceptable

limits.

6.3 RQ3: CIMig Translation Failures
Although our approach generates CI files of good quality, there are

certain cases where our approach fails to generate an acceptable

9

Table 1: User Study results on manual migration, and migrations with CIMig and with GHA Importer

Project name

First Workflow Final Workflow Avg. user rating

Manual CIMig GHA Imp. Manual CIMig GHA Imp.

CIMig

files

GHA

Imp.

files
time (m) time (m) saved (%) time (m) saved (%) time (m) time (m) saved (%) time (m) saved (%)

WxJava 38.40 23.6 38.54 11.60 69.79 76.80 30.20 60.68 19.80 74.22 2.60 4.80

hutool 41.40 26.4 36.23 9.00 78.26 90.40 40.20 55.53 14.80 83.63 2.80 4.40

Elasticsearch-sql 29.00 24.20 16.55 4.60 84.14 46.00 36.20 21.30 8.00 82.61 3.40 5.00

Hsweb-framework 68.80 9.80 85.7 24.00 65.12 93.40 34.60 62.96 45.00 51.82 3.40 3.40

Telegram Bots 22.20 10.40 53.15 17.20 22.52 73.40 26.80 63.49 33.60 54.22 3.00 3.20

Average 39.96 18.88 46.05% 13.28 63.97% 76 33.6 52.79% 24.24 69.30% 3.04 4.16

translation. These failures are classified into three categories as

follows:

Syntax with no direct equivalent: (5 out of 25 Travis CI ⇒
GHA translations, 22 out of 25 GHA ⇒ Travis CI translations)

Although there are some similarities between Travis CI and GHA

configuration syntaxes, there are certain functionalities that are

supported in only one of them. For example, GHA offers the uses
keyword that allows reuse of existing GHA workflows in the form

of Actions, but Travis CI does not offer an equivalent functionality.

An example of this syntax is shown in Listing 1.

uses: sonarsource/sonarcloud-github-action
env:

GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
SONAR_TOKEN: ${{ secrets.SONAR_TOKEN }}
SONAR_SCANNER_OPTS: -Dsonar.organization=albertus82-github

Listing 1: GHA syntax with no Travis CI equivalent from
Albertus82/Cyclesmod

Syntax that relies on more than two levels: (7 out of 25 Travis
CI⇒ GHA translations, 2 out of 25 GHA⇒ Travis CI translations)

Since we opted to capture and translate H-2 ASTs in Travis CI, any

functionalities that depend on the configuration of more than 2

levels are not captured. For example, the usage of multiple stages

with different jdk and language settings in Travis.

Unabstracted syntax and parsing issues: (23 out of 25 Travis CI
⇒ GHA translations, 4 out of 25 GHA⇒ Travis CI translations)

Since the abstraction process was applied with the usage of the

most common commands, some less common commands, such as

openssl and jarsigner, are not represented within the translation
rules we generated. An illustration of this is shown in Listing 2.

before_deploy:

openssl aes-256-cbc -K $encrypted_key

-iv $encrypted_iv -in release-key.jks.enc
-out gotify-release-key.jks -d ...

jarsigner -verbose -sigalg SHA1withRSA

-digestalg SHA1 -keystore release-key.jks

Listing 2: Travis CI syntax from Gotify/Android containing
unmatched commands

7 RELATEDWORKS
Automatic Code Migration.Migrating from one programming

language to another is very common in large software systems

due to the need for cross-platform support and language sup-

port features. However, programming language migration is effort-

intensive and error-prone [13, 53, 87] due to the differences

in syntax and unfamiliarity with the target programming lan-

guage. To mitigate this, researchers developed tools and tech-

niques for automatic programming language migration. For exam-

ple, Java2CSharp [27] and j2swift [61] are developed for migrating

from Java to C# and Swift. However, these tools and other research

works [25, 38, 54] use predefined transformation rules for their

migration. Creating these rules is a laborious process, and in many

cases, thesemigrationsmay fail due to complex and rare syntax used

by different programming languages. To resolve these limitations,

Zhong et al. [87] and Nguyen et al. [57] utilized a mining-based

approach for automatic migration. These approaches heavily relied

on similarity-based alignment and may not correctly migrate code

if the target language adopts a different naming scheme. mppSMT

by Nguyen et al. [58], utilizes a divide-and-conquer approach with a

phrase-based SMT engine to integrate the semantic features for au-

tomatic migration. The approach uses data and control dependency

of source code, which may not be applicable to configuration code

due to its higher level of abstraction. j2sInferer [4] is a recent ap-

proach that utilizes syntax and mapping rules with minimal domain

logic for migration of Android Java code to Swift code with 65%

cross-project accuracy. Such syntax similarity is very low among

configuration code files and makes alignment infeasible. More re-

cently, ML-based techniques [14, 37] are proposed for the automatic

migration of programming languages. However, ML approaches

require large corpora for model training, which may not be fea-

sible for recently developed programming languages or DevOps

configuration files where very little migration data exists.

Configuration Maintenance. Like source code files, the differ-
ent configuration code files for CI systems, Build systems, etc., are

integral parts of software projects. Prior works suggested that de-

velopers often work on maintaining and migrating configuration

systems [34, 67, 80, 85] to improve performance and productivity.

However, maintaining configuration code is tedious due to limited

domain-specific knowledge and syntactical differences in configura-

tion code across different tools. Gligoric et al. [34] utilized dynamic

analysis and search-based refactoring techniques to automatically

migrate build systems. Moreover, automated program repair-based

techniques [39, 49, 55] are applied to fix build scripts. Xue et al. [82]

proposed a technique for automatic migration to Docker contain-

ers. Recently, Henkel et al. [40] proposed binnacle to automatically

detect bad practices in Docker files. Vassallo et al. [77] utilized

program analysis techniques to detect anti-patterns in CI configu-

ration scripts. At the same time, Rahman & Parmin [65] proposed

a technique for automatically detecting security vulnerabilities in

10

Puppet-based IaC configurations. Although there are several tech-

niques for the automatic migration and maintenance of different

configuration systems, there is no research work on the automatic

migration of CI systems.

8 THREATS TO VALIDITY
Internal Validity. The main threat is the incorrect composition of

the generated CI configuration code. To mitigate this, we tested our

approach thoroughly in several rounds, and we contextualized our

results by comparing them to both developer-crafted and GitHub

Actions Importer-generated files. We also evaluated the generated

files with state-of-the-art metrics to evaluate the correctness of the

approach, and further evaluated them via the user study.

External Validity.We evaluated our approach for migration be-

tween Travis CI and GitHub Actions. These projects are Java-based

and OSS in nature. So, our approach may not work correctly on

other CI systems with different programming languages and closed-

source projects. Although the evaluation is CI system-specific, the

proposed rule mining and composition techniques are more generic.

Moreover, different CI systems support similar functionalities and

similar structures, such as YAML. So, we believe that our proposed

approach will work for other CI systems as well, with sufficient

retraining. We attempted to approximate actual user experience via

our user study by recruiting developers with varied development

and CI experiences, but their experiences may not reflect every

possible users’.

Construction Validity. For automatic rule generation, we consid-

ered two-level (H-2) level AST transition nodes. We believe these

rules are a good balance between conservativeness and diversity,

for reasons detailed in the Parameter Tuning paragraph of 4.2.3.

9 CONCLUSION AND FUTUREWORK
With the growing use of CI systems for faster code integration,

migration of CI systems has become very common in development

activity. However, migrating CI systems is a tedious and error-prone

process [50]. We presented CIMig To assist the developers with

CI migration, and help facilitate this process. In our evaluation,

even with a small set of existing CI migration data, CIMig can

generate CI files of good similarity to the developer-crafted versions.

Furthermore, the user study also suggests that CIMig is beneficial

for developers, allowing them to migrate CI systems in less time

thanmanual migration. Moreover, the proposed approach is generic

in nature and can be easily applied to other configuration systems

as well. In the future, we plan to incorporate large language models

(LLM), such as ChatGPT, to generate more accurate migration rules

and apply the automatic migration process to other configuration

systems, such as Docker, etc.

REFERENCES
[1] Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast algorithms for mining

association rules. In Proc. 20th int. conf. very large data bases, VLDB, Vol. 1215.
487–499.

[2] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-

fied Pre-training for Program Understanding and Generation. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. Association for Computational

Linguistics, Online, 2655–2668. https://www.aclweb.org/anthology/2021.naacl-

main.211

[3] Gerald Albaum. 1997. The Likert Scale Revisited. Market Research Soci-
ety. Journal. 39, 2 (1997), 1–21. https://doi.org/10.1177/147078539703900202

arXiv:https://doi.org/10.1177/147078539703900202

[4] Kijin An, Na Meng, and Eli Tilevich. 2018. Automatic Inference of Java-to-Swift

Translation Rules for Porting Mobile Applications. In 2018 IEEE/ACM 5th Inter-
national Conference on Mobile Software Engineering and Systems (MOBILESoft).
180–190.

[5] Anonymous. 2024. Replication Package. https://figshare.com/s/

d903576fab38e2a54660

[6] Azure. 2023. Azure Pipelines | Microsoft Azure. https://azure.microsoft.com/en-

us/products/devops/pipelines

[7] Microsoft Azure. 2023. Build and Release Tasks - Azure Pipelines. https:

//learn.microsoft.com/en-us/azure/devops/pipelines/process/tasks

[8] Microsoft Azure. 2023. Microsoft-hosted agents for Azure Pipelines - Azure

Pipelines. https://learn.microsoft.com/en-us/azure/devops/pipelines/agents/

hosted

[9] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, My Tests Broke

the Build: An Explorative Analysis of Travis CI with GitHub. In 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR). IEEE, Buenos
Aires, Argentina, 356–367. https://doi.org/10.1109/MSR.2017.62

[10] Ruben Bermudez. 2024. rubenlagus/TelegramBots. https://github.com/

rubenlagus/TelegramBots

[11] Adam Bertram. 2021. Config as Code: What is it and how is it beneficial? https:

//octopus.com/blog/config-as-code-what-is-it-how-is-it-beneficial

[12] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. German,

and Prem Devanbu. 2009. The promises and perils of mining git. In 2009 6th
IEEE International Working Conference on Mining Software Repositories. IEEE,
Vancouver, BC, Canada, 1–10. https://doi.org/10.1109/MSR.2009.5069475

[13] Chunyang Chen. 2020. Similarapi: mining analogical apis for library migra-

tion. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Companion Proceedings. 37–40.

[14] Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-to-tree neural networks

for program translation. Advances in neural information processing systems 31
(2018).

[15] Zimin Chen and Martin Monperrus. 2019. The Remarkable Role of Similarity

in Redundancy-based Program Repair. arXiv:1811.05703 (May 2019). http:

//arxiv.org/abs/1811.05703 arXiv:1811.05703 [cs].

[16] Yun Chi, Yi Xia, Yirong Yang, and Richard R. Muntz. 2005. Mining Closed and

Maximal Frequent Subtrees from Databases of Labeled Rooted Trees. IEEE Trans.
Knowl. Data Eng. 17, 2 (2005), 190–202. https://doi.org/10.1109/TKDE.2005.30

[17] Yun Chi, Yirong Yang, and Richard R. Muntz. 2005. Canonical forms for labelled

trees and their applications in frequent subtree mining. Knowledge and Informa-
tion Systems 8, 2 (Aug 2005), 203–234. https://doi.org/10.1007/s10115-004-0180-7

[18] Circle-CI. 2023. Introduction to YAML Configurations - CircleCI. https://circleci.

com/docs/introduction-to-yaml-configurations/

[19] Circle-CI. 2023. Orbs overview - CircleCI. https://circleci.com/docs/orb-intro/

[20] CircleCI. 2023. Continuous Integration and Delivery - CircleCI. https://circleci.

com/

[21] Yihong Dong, Jiazheng Ding, Xue Jiang, Ge Li, Zhuo Li, and Zhi Jin. 2023. Code-

score: Evaluating code generation by learning code execution. arXiv preprint
arXiv:2301.09043 (2023).

[22] dromara. 2024. https://github.com/dromara/hutool

[23] Thomas Durieux, Rui Abreu, Martin Monperrus, Tegawendé F. Bissyandé, and

Luís Cruz. 2019. An Analysis of 35+ Million Jobs of Travis CI. 2019 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME) (Sep 2019),

291–295. https://doi.org/10.1109/icsme.2019.00044 arXiv: 1904.09416.

[24] Aryaz Eghbali and Michael Pradel. 2022. CrystalBLEU: Precisely and Efficiently

Measuring the Similarity of Code. In Proceedings of the 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineering. ACM, Rochester MI USA,

1–12. https://doi.org/10.1145/3551349.3556903

[25] M. El-Ramly, R. Eltayeb, and H.A. Alla. 2006. An Experiment in Automatic

Conversion of Legacy Java Programs to C#. In IEEE International Conference on
Computer Systems and Applications, 2006. 1037–1045. https://doi.org/10.1109/

AICCSA.2006.205215

[26] Vahid Etemadi, Omid Bushehrian, and Reza Akbari. 2017. Association rule

mining for finding usability problem patterns: A case study on StackOverflow.

In 2017 International Symposium on Computer Science and Software Engineering

11

https://www.aclweb.org/anthology/2021.naacl-main.211
https://www.aclweb.org/anthology/2021.naacl-main.211
https://doi.org/10.1177/147078539703900202
https://arxiv.org/abs/https://doi.org/10.1177/147078539703900202
https://figshare.com/s/d903576fab38e2a54660
https://figshare.com/s/d903576fab38e2a54660
https://azure.microsoft.com/en-us/products/devops/pipelines
https://azure.microsoft.com/en-us/products/devops/pipelines
https://learn.microsoft.com/en-us/azure/devops/pipelines/process/tasks
https://learn.microsoft.com/en-us/azure/devops/pipelines/process/tasks
https://learn.microsoft.com/en-us/azure/devops/pipelines/agents/hosted
https://learn.microsoft.com/en-us/azure/devops/pipelines/agents/hosted
https://doi.org/10.1109/MSR.2017.62
https://github.com/rubenlagus/TelegramBots
https://github.com/rubenlagus/TelegramBots
https://octopus.com/blog/config-as-code-what-is-it-how-is-it-beneficial
https://octopus.com/blog/config-as-code-what-is-it-how-is-it-beneficial
https://doi.org/10.1109/MSR.2009.5069475
http://arxiv.org/abs/1811.05703
http://arxiv.org/abs/1811.05703
https://doi.org/10.1109/TKDE.2005.30
https://doi.org/10.1007/s10115-004-0180-7
https://circleci.com/docs/introduction-to-yaml-configurations/
https://circleci.com/docs/introduction-to-yaml-configurations/
https://circleci.com/docs/orb-intro/
https://circleci.com/
https://circleci.com/
https://github.com/dromara/hutool
https://doi.org/10.1109/icsme.2019.00044
https://doi.org/10.1145/3551349.3556903
https://doi.org/10.1109/AICCSA.2006.205215
https://doi.org/10.1109/AICCSA.2006.205215

Conference (CSSE). IEEE, 24–29.
[27] Mauceri Christian Fau Alexandre. 2023. Java2CSharp. http://sourceforge.net/

projects/j2cstranslator/ accessed 04-01-2023.

[28] GitHub. 2023. https://github.com/github/gh-actions-importer

[29] GitHub. 2023. https://docs.github.com/en/actions/using-workflows/workflow-

syntax-for-github-actions#jobsjob_idruns-on

[30] GitHub. 2023. https://docs.github.com/en/actions/using-workflows/reusing-

workflows

[31] GitHub. 2023. About GitHub. https://github.com/about

[32] GitHub. 2023. GitHub Actions. https://github.com/features/actions

[33] GitHub. 2023. github/gh-actions-importer. https://github.com/github/gh-actions-

importer

[34] Milos Gligoric, Wolfram Schulte, Chandra Prasad, Danny Van Velzen, Iman

Narasamdya, and Benjamin Livshits. 2014. Automated migration of build scripts

using dynamic analysis and search-based refactoring. ACM SIGPLAN Notices 49,
10 (2014), 599–616.

[35] Mehdi Golzadeh, Alexandre Decan, and Tom Mens. 2022. On the rise and fall of

CI services in GitHub. In 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, Honolulu, HI, USA, 662–672. https:

//doi.org/10.1109/SANER53432.2022.00084

[36] Georgios Gousios and Diomidis Spinellis. 2017. Mining Software Engineering

Data from GitHub. In 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C). IEEE, Buenos Aires, Argentina, 501–502. https:

//doi.org/10.1109/ICSE-C.2017.164

[37] XiaodongGu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2017. DeepAM:

Migrate APIs with multi-modal sequence to sequence learning. arXiv preprint
arXiv:1704.07734 (2017).

[38] Ahmed E Hassan and Richard C Holt. 2005. A lightweight approach for migrating

Web frameworks. Information and Software Technology 47, 8 (2005), 521–532.

[39] Foyzul Hassan and Xiaoyin Wang. 2018. Hirebuild: An automatic approach to

history-driven repair of build scripts. In Proceedings of the 40th international
conference on software engineering. 1078–1089.

[40] Jordan Henkel, Christian Bird, Shuvendu K. Lahiri, and Thomas Reps. 2020.

Learning from, understanding, and supporting DevOps artifacts for docker. In

Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing. ACM, Seoul South Korea, 38–49. https://doi.org/10.1145/3377811.3380406

[41] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.

2016. Usage, costs, and benefits of continuous integration in open-source projects.

In Proceedings of the 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering. ACM, 426–437. https://doi.org/10.1145/2970276.2970358

[42] Andre Hora and Marco Tulio Valente. 2015. Apiwave: Keeping track of API

popularity and migration. In 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, Bremen, Germany, 321–323. https:

//doi.org/10.1109/ICSM.2015.7332478

[43] hsweb. 2024. https://github.com/hs-web/hsweb-framework

[44] Mingsheng Jiao, Tingrui Yu, Xuan Li, Guanjie Qiu, Xiaodong Gu, and Beijun

Shen. 2023. On the Evaluation of Neural Code Translation: Taxonomy and Bench-

mark. In 2023 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 1529–1541.

[45] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.

German, and Daniela Damian. 2016. An in-depth study of the promises and perils

of mining GitHub. Empirical Software Engineering 21, 5 (Oct 2016), 2035–2071.

https://doi.org/10.1007/s10664-015-9393-5

[46] Trupti A Kumbhare and Santosh V Chobe. 2014. An overview of association rule

mining algorithms. International Journal of Computer Science and Information
Technologies 5, 1 (2014), 927–930.

[47] Jia Li, Ge Li, Zhuo Li, Zhi Jin, Xing Hu, Kechi Zhang, and Zhiyi Fu. 2023. Codeed-

itor: Learning to edit source code with pre-trained models. ACM Transactions on
Software Engineering and Methodology 32, 6 (2023), 1–22.

[48] Tomasz Lisowski. 2021. Top Git Hosting Services for 2022. https://gitprotect.io/

blog/top-git-hosting-services-for-2022/

[49] Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang. 2019. History-

driven build failure fixing: how far are we?. In Proceedings of the 28th acm sigsoft
international symposium on software testing and analysis. 43–54.

[50] Pooya Rostami Mazrae, Tom Mens, Mehdi Golzadeh, and Alexandre Decan. 2023.

On the usage, co-usage and migration of CI/CD tools: A qualitative analysis.

Empirical Software Engineering 28, 2 (Mar 2023), 52. https://doi.org/10.1007/

s10664-022-10285-5

[51] Mirjana Mazuran, Elisa Quintarelli, and Letizia Tanca. 2009. Mining Tree-Based
Frequent Patterns from XML. Lecture Notes in Computer Science, Vol. 5822.

Springer Berlin Heidelberg, Berlin, Heidelberg, 287–299. https://doi.org/10.

1007/978-3-642-04957-6_25

[52] Paul David McNicholas, Thomas Brendan Murphy, and M O’Regan. 2008. Stan-

dardising the lift of an association rule. Computational Statistics & Data Analysis
52, 10 (2008), 4712–4721.

[53] Sichen Meng, Xiaoyin Wang, Lu Zhang, and Hong Mei. 2012. A history-

based matching approach to identification of framework evolution. In 2012
34th International Conference on Software Engineering (ICSE). 353–363. https:

//doi.org/10.1109/ICSE.2012.6227179

[54] M. Mossienko. 2003. Automated Cobol to Java recycling. In Seventh European
Conference on Software Maintenance and Reengineering, 2003. Proceedings. 40–50.
https://doi.org/10.1109/CSMR.2003.1192409

[55] Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González. 2021. Fixing

dependency errors for Python build reproducibility. In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis. 439–
451.

[56] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.

Curating GitHub for engineered software projects. Empirical Software Engineering
22, 6 (Dec 2017), 3219–3253. https://doi.org/10.1007/s10664-017-9512-6

[57] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N Nguyen.

2014. Statistical learning approach for mining API usagemappings for codemigra-

tion. In Proceedings of the 29th ACM/IEEE international conference on Automated
software engineering. 457–468.

[58] Anh Tuan Nguyen, Zhaopeng Tu, and Tien N. Nguyen. 2016. Do Contexts Help

in Phrase-Based, Statistical Source Code Migration?. In 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 155–165. https:

//doi.org/10.1109/ICSME.2016.89

[59] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N. Nguyen.

2017. Exploring API Embedding for API Usages and Applications. In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE). 438–
449. https://doi.org/10.1109/ICSE.2017.47

[60] Jakob Nielsen. 1993. Response Time Limits: Article by Jakob Nielsen. https:

//www.nngroup.com/articles/response-times-3-important-limits/

[61] Pat Niemeyer. 2023. j2swift. https://github.com/patniemeyer/j2swift accessed

04-01-2023.

[62] NLPChina. 2024. https://github.com/NLPchina/elasticsearch-sql

[63] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lam-

bert Pouguem Wassi, Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh

Sinha, and Reyhaneh Jabbarvand. 2023. Understanding the effectiveness of large

language models in code translation. arXiv preprint arXiv:2308.03109 (2023).
[64] Hung Dang Phan, Anh Tuan Nguyen, Trong Duc Nguyen, and Tien N. Nguyen.

2017. Statistical Migration of API Usages. In 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). 47–50. https://doi.org/

10.1109/ICSE-C.2017.17

[65] Akond Rahman and Chris Parnin. 2023. Detecting and Characterizing Propaga-

tion of Security Weaknesses in Puppet-based infrastructure Management. IEEE
Transactions on Software Engineering (2023), 1–18. https://doi.org/10.1109/TSE.

2023.3265962

[66] Baptiste Roziere, Marie-Anne Lachaux, Guillaume Lample, and Lowik Chanussot.

2020. Unsupervised Translation of Programming Languages. NeurIPS 2020 (2020),
21.

[67] Dhia Elhaq Rzig, Foyzul Hassan, Chetan Bansal, and Nachiappan Nagappan.

2022. Characterizing the Usage of CI Tools in ML Projects. In Proceedings of
the 16th ACM / IEEE International Symposium on Empirical Software Engineering
and Measurement (Helsinki, Finland) (ESEM ’22). Association for Computing

Machinery, New York, NY, USA, 69–79. https://doi.org/10.1145/3544902.3546237

[68] Dhia Elhaq Rzig, Foyzul Hassan, and Marouane Kessentini. 2022. An empirical

study on ML DevOps adoption trends, efforts, and benefits analysis. Information
and Software Technology 152 (Dec 2022), 107037. https://doi.org/10.1016/j.infsof.

2022.107037

[69] Gerard Salton and Michael J. McGill. 1986. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., USA.

[70] Saghar Talebipour, Yixue Zhao, Luka Dojcilović, Chenggang Li, and Nenad

Medvidović. 2021. UI Test Migration Across Mobile Platforms. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
756–767. https://doi.org/10.1109/ASE51524.2021.9678643

[71] Cedric Teyton, Jean-Remy Falleri, and Xavier Blanc. 2013. Automatic discovery

of function mappings between similar libraries. In 2013 20th Working Conference
on Reverse Engineering (WCRE). IEEE, Koblenz, Germany, 192–201. https://doi.

org/10.1109/WCRE.2013.6671294

[72] Travis-CI. 2021. Travis CI Documentation - Using YAML as a build configuration

language. https://docs.travis-ci.com/user/build-config-yaml/ accessed 08-31-

2021.

[73] Travis-CI. 2023. https://docs.travis-ci.com/user/multi-os/

[74] Travis-CI. 2023. https://docs.travis-ci.com/user/installing-dependencies/

[75] Travis-CI. 2023. Travis CI Documentation - Triggering Builds. https://docs.travis-

ci.com/user/triggering-builds/

[76] TravisCI. 2022. Home – Travis-CI_2022. https://www.travis-ci.com/

[77] Carmine Vassallo, Sebastian Proksch, Harald C Gall, and Massimiliano Di Penta.

2019. Automated reporting of anti-patterns and decay in continuous integration.

In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, 105–115.

[78] Abel Wang. 2019. What is Configuration as Code? | Microsoft Learn.

https://learn.microsoft.com/en-us/shows/one-dev-minute/what-is-

configuration-as-code--one-dev-question

12

http://sourceforge.net/projects/j2cstranslator/
http://sourceforge.net/projects/j2cstranslator/
https://github.com/github/gh-actions-importer
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idruns-on
https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idruns-on
https://docs.github.com/en/actions/using-workflows/reusing-workflows
https://docs.github.com/en/actions/using-workflows/reusing-workflows
https://github.com/about
https://github.com/features/actions
https://github.com/github/gh-actions-importer
https://github.com/github/gh-actions-importer
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1109/ICSE-C.2017.164
https://doi.org/10.1109/ICSE-C.2017.164
https://doi.org/10.1145/3377811.3380406
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1109/ICSM.2015.7332478
https://doi.org/10.1109/ICSM.2015.7332478
https://github.com/hs-web/hsweb-framework
https://doi.org/10.1007/s10664-015-9393-5
https://gitprotect.io/blog/top-git-hosting-services-for-2022/
https://gitprotect.io/blog/top-git-hosting-services-for-2022/
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1007/s10664-022-10285-5
https://doi.org/10.1007/978-3-642-04957-6_25
https://doi.org/10.1007/978-3-642-04957-6_25
https://doi.org/10.1109/ICSE.2012.6227179
https://doi.org/10.1109/ICSE.2012.6227179
https://doi.org/10.1109/CSMR.2003.1192409
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1109/ICSME.2016.89
https://doi.org/10.1109/ICSME.2016.89
https://doi.org/10.1109/ICSE.2017.47
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://github.com/patniemeyer/j2swift
https://github.com/NLPchina/elasticsearch-sql
https://doi.org/10.1109/ICSE-C.2017.17
https://doi.org/10.1109/ICSE-C.2017.17
https://doi.org/10.1109/TSE.2023.3265962
https://doi.org/10.1109/TSE.2023.3265962
https://doi.org/10.1145/3544902.3546237
https://doi.org/10.1016/j.infsof.2022.107037
https://doi.org/10.1016/j.infsof.2022.107037
https://doi.org/10.1109/ASE51524.2021.9678643
https://doi.org/10.1109/WCRE.2013.6671294
https://doi.org/10.1109/WCRE.2013.6671294
https://docs.travis-ci.com/user/build-config-yaml/
https://docs.travis-ci.com/user/multi-os/
https://docs.travis-ci.com/user/installing-dependencies/
https://docs.travis-ci.com/user/triggering-builds/
https://docs.travis-ci.com/user/triggering-builds/
https://www.travis-ci.com/
https://learn.microsoft.com/en-us/shows/one-dev-minute/what-is-configuration-as-code--one-dev-question
https://learn.microsoft.com/en-us/shows/one-dev-minute/what-is-configuration-as-code--one-dev-question

[79] Wechat-Group. 2024. Wechat-Group/WxJava. https://github.com/Wechat-

Group/WxJava

[80] DavidWidder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu. 2018. I’m

Leaving You, Travis: A Continuous Integration Breakup Story. In International
Conference on Mining Software Repositories (MSR). ACM, 165–169. https://doi.

org/10.1145/3196398.3196422

[81] Chunli Xie, Xia Wang, Cheng Qian, and Mengqi Wang. 2020. A Source Code

Similarity Based on Siamese Neural Network. Applied Sciences 10, 21 (Oct 2020),
7519. https://doi.org/10.3390/app10217519

[82] Bo Xu, Song Wu, Jiang Xiao, Hai Jin, Yingxi Zhang, Guoqiang Shi, Tingyu Lin,

Jia Rao, Li Yi, and Jizhong Jiang. 2020. Sledge: Towards efficient live migration of

docker containers. In 2020 IEEE 13th International Conference on Cloud Computing
(CLOUD). IEEE, 321–328.

[83] Guang Yang, Yu Zhou, Xiang Chen, Xiangyu Zhang, Yiran Xu, Tingting Han,

and Taolue Chen. 2023. A Syntax-Guided Multi-Task Learning Approach for

Turducken-Style Code Generation. arXiv preprint arXiv:2303.05061 (2023).
[84] Fiorella Zampetti, Gabriele Bavota, Gerardo Canfora, and Massimiliano Di Penta.

2019. A study on the interplay between pull request review and continuous

integration builds. In 2019 IEEE 26th international conference on software analysis,
evolution and reengineering (SANER). IEEE, 38–48.

[85] Yang Zhang, Bogdan Vasilescu, Huaimin Wang, and Vladimir Filkov. 2018. One

Size Does Not Fit All: An Empirical Study of Containerized Continuous De-

ployment Workflows. In Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, 295–

306. https://doi.org/10.1145/3236024.3236033

[86] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bog-

dan Vasilescu. 2017. The impact of continuous integration on other software

development practices: a large-scale empirical study. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 60–71.

[87] Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang. 2010.

Mining APImapping for languagemigration. In 2010 ACM/IEEE 32nd International
Conference on Software Engineering, Vol. 1. 195–204. https://doi.org/10.1145/

1806799.1806831

13

https://github.com/Wechat-Group/WxJava
https://github.com/Wechat-Group/WxJava
https://doi.org/10.1145/3196398.3196422
https://doi.org/10.1145/3196398.3196422
https://doi.org/10.3390/app10217519
https://doi.org/10.1145/3236024.3236033
https://doi.org/10.1145/1806799.1806831
https://doi.org/10.1145/1806799.1806831

	Abstract
	1 Introduction
	2 Problem Contextualization
	3 Background
	3.1 Continuous Integration
	3.2 Example-based Learning

	4 Approach
	4.1 Data Preparation
	4.2 Training CIMig
	4.3 Using CIMig

	5 Evaluation
	5.1 RQ1: How effective is CIMig?
	5.2 RQ2: What is the CIMig Execution Cost?
	5.3 RQ3: What are the Shortcomings of CIMig?

	6 Results
	6.1 RQ1: CIMig Migration Effectiveness
	6.2 RQ2: CIMig Execution Cost
	6.3 RQ3: CIMig Translation Failures

	7 Related works
	8 Threats to Validity
	9 Conclusion and Future work
	References

