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Abstract

The growing popularity of machine learning (ML) and the integra-

tion of ML components with other software artifacts has led to

the use of continuous integration and delivery (CI/CD) tools, such

as Travis CI, GitHub Actions, etc. that enable faster integration

and testing for ML projects. Such CI/CD configurations and ser-

vices require synchronization during the life cycle of the projects.

Several works discussed how CI/CD configuration and services

change during their usage in traditional software systems. How-

ever, there is very limited knowledge of how CI/CD configuration

and services change in ML projects.

To fill this knowledge gap, this work presents the first empiri-

cal analysis of how CI/CD configuration evolves for ML software

systems. We manually analyzed 343 commits collected from 508

open-source ML projects to identify common CI/CD configuration

change categories in ML projects and devised a taxonomy of 14 co-

changes in CI/CD and ML components. Moreover, we developed

a CI/CD configuration change clustering tool that identified fre-

quent CI/CD configuration change patterns in 15,634 commits. Fur-

thermore, we measured the expertise of ML developers who mod-

ify CI/CD configurations. Based on this analysis, we found that

61.8% of commits include a change to the build policy and minimal

changes related to performance and maintainability compared to

general open-source projects. Additionally, the co-evolution anal-

ysis identified that CI/CD configurations, in many cases, changed

unnecessarily due to bad practices such as the direct inclusion of

dependencies and a lack of usage of standardized testing frame-

works. More practices were found through the change patterns

analysis consisting of using deprecated settings and reliance on a

generic build language. Finally, our developer’s expertise analysis

suggests that experienced developers are more inclined to modify

CI/CD configurations.
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1 Introduction
Continuous Integration (CI) [1] establishes an automated way to

build, package, and test software applications and encourages de-

velopers to commit code changes more frequently [2–4]. After CI

comes Continuous Delivery (CD), which automates the delivery of

applications to selected environments in short cycles [5]. CI/CD

pipelines help create an automated and consistent process that

helps reduce human errors, increase productivity in teams, and

accelerate release cycles [2, 3, 6]. CI/CD has become the industry

standard of modern software development [7] and has been widely

adopted in Open-Source Software (OSS) projects [3, 8] and in Ma-

chine Learning (ML) projects [9] which have gained widespread

popularity and significance in recent years [10, 11].

Machine Learning shares common ground with traditional soft-

ware development in the need for multiple iterations to enhance

the quality ofMLmodels.However, MLprojects introduce a unique

set of challenges due to their inherent complexity [12, 13]. For in-

stance, regular testing methods in CI can cause overfitting render-

ing accuracy measures unreliable for evaluating models [14], and

ML projects encounter challenges in version control and depen-

dency management, leading tomanual interventions during model

experiments and deployments to address these issues [15]. Further-

more, limited knowledge exists on software maintenance and evo-

lution in the context of ML systems [16]. A recent study by Zam-

petti et al. [17] explored how CI/CD configurations evolve over

time in open-source projects and focused mostly on the restruc-

turing actions occurring within these files. Other studies [18–20]

on CI/CD focus on the uses and challenges of utilizing CI/CD in

traditional software systems. To the best of our knowledge, under-

standing the nuances of this co-evolution between ML and CI/CD

changes remains an undiscovered territory. This research gapmakes
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it challenging to discern the necessary adjustments in CI/CD con-

figurations to effectively accommodate the changes inML systems.

Building upon this context, this paper presents an in-depth analy-

sis of the evolution of CI/CD configurations in ML projects. By ex-

amining the intricate relationships between changes in ML source

files and corresponding adjustments in CI/CD configurations, ana-

lyzing the patterns of change, and evaluating developers’ expertise,

this study aims to unravel the complexities of sustaining and main-

taining CI/CD setups for evolving ML models. We collected 508

open-source Python-based ML-enabled projects on GitHub having

Travis CI as their CI/CD infrastructure.We opted for these filtering

criteria since Python is the most popular language for ML-enabled

projects, and Travis is their most popular CI tool [9]. We extract

15,634 commits from these projects modifying the .travis.yml file.

We filtered those commits to include only ones modifying both

ML source files and CI/CD configurations and then we applied ran-

dom sampling to obtain 343 commits which will be used for man-

ual analysis. Through this work, we answer the following research

questions:

● RQ1: How do CI/CD pipelines evolve in ML projects? We observe

that changes to the Build Policy in ML CI/CD configurations oc-

cur in over half of the commits, mostly due to updating the in-

stallation policy. Unlike Zampetti et al.’s [17] results for general-

purpose projects, we found that Performance, Maintainability,

and Build Process Organization are not major concerns when

it comes to updating CI/CD configurations which may lead to

technical debt and prolonged builds.

● RQ2:How do CI/CD pipelines co-evolve withML code?Wedevise a

taxonomy of 14 co-evolution categories and we find Testing and

Dependency Management as the most prominent categories of

change whereas Deployment andData Versioning are infrequent.

We identified two bad practices performed byML developers like

adding dependencies directly to the .travis.yml file and not using

the automatic discovery feature of testing frameworks.

● RQ3:What are the common patterns of change occurring in CI/CD

configurations? We generated a comprehensive list of change pat-

terns occurring in CI/CD pipelines in ML projects. The AST anal-

ysis supports our earlier findings and shows that there are mi-

nor adjustments related to deployment and failure handling. This

is worrisome because it means that ML developers often resort

to manual interventions for debugging build failure and for de-

ploying models. We found two more bad practices which consist

of using deprecated Travis CI settings and relying on a generic

build language.

● RQ4: How skilled are the developers changing CI/CD configura-

tions in ML projects? Our analysis revealed a robust and statisti-

cally significant positive association between developers’ project

knowledge and expertise, and their involvement in modifying

CI/CD configurations. This indicated that the more active and

knowledgeable developers are more inclined to modify CI/CD

configurations.

In summary, our study makes the following contributions:

● The first quantitative and qualitative study of CI/CD configura-

tion evolution in open-source ML projects.

● A taxonomy of 14 categories of co-changes between CI/CD con-

figurations and ML source code.

● A list of common change patterns in CI/CD configurations in ML

projects that can be used to mitigate challenges associated with

ML CI evolution.

● A study on the expertise employed to change the pipeline con-

figuration files.

Furthermore, our code scripts and empirical dataset are publicly

available for researchers to replicate and build upon [21].

The remainder of this paper is organized as follows: Section 2

discusses the background of the project, and Section 3 outlines the

research methodology employed in our empirical study. Section 4

provides a detailed analysis addressing the four research questions.

Potential threats to the validity of our study arementioned in Section 5.

The research implications are discussed in Section 7. Finally, Section 6

delves into related works to our study, while Section 8 concludes

this study.

2 Background

CI/CD pipelines have been used by different types of projects and

have been adopted by a fair amount ofML projects [9, 22]. In recent

years, some CI/CD tools specifically designed for ML projects have

emerged, including KubeFlow [23], Amazon Sagemaker [24], and

Azure Machine Learning [25]. However, these ML-specific tools

can not be used as standalone and typically complement traditional

CI/CD tools for managing the codebase of ML-enabled projects.

Despite the differences between traditional software development

and ML projects, some CI/CD tools designed for the former, like

Travis CI [26], remain popular in both domains.

Travis CI [26] is one of the largest and most popular CI/CD ser-

vices [17]. It supports a variety of programming languages and

provides a cloud-based infrastructure, relieving developers of the

burden of maintaining their own environments. Travis CI auto-

matically detects changes to the repository on version control sys-

tems like GitHub and triggers a build based on predefined events.

The build process is configured by the .travis.yml file which re-

sides in the root of the project repository. An example of a typical

.travis.yml file is shown in Listing 1.

1 l anguage : python
2 os :
3 − l i n u x
4 python :
5 − 3 . 8
6 i n s t a l l :
7 − pip i n s t a l l − r r e qu i r emen t s . t x t
8 s c r i p t :
9 − n o s e t e s t s . −−with − coverage
10 a f t e r _ s u c c e s s :
11 − codecov

Listing 1: An example of.travis.yml file.

The .travis.yml file defines the build process through a series of

stages. These stages consist of jobs running in parallel and execut-

ing different phases in a virtual environment. The build environ-

ment can be configured through the os keyword, which sets the

Operating System of a job’s container, and the language keyword,

which installs the tools and dependencies of a specific program-

ming language. This configuration can be used multiple times and

with different values to configure various environments for jobs,

each executing the same sub-script in its designated environment.

The job executes a series of phases which are shown in Figure 1.
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Figure 1: Travis CI job Lifecycle.

The typical phases include an install phase for dependency

installation, a script phase for running tests, an after_success

phase to handle post-test actions such as coverage reporting, and

a deploy phase for project deployment. In Listing 1, the config-

uration installs project dependencies using pip, runs tests with

nosetests, and reports coverage to codecov.

3 Research Methodology

Figure 2 shows an overview of the research methodology. In this

section, we begin by describing the dataset used in this study and

how we acquired it. Then we will move on to explaining the ap-

proach by specifying the steps needed to answer each of the four

research questions.

Figure 2: Overview of Research Approach

3.1 Data Collection

In order to conduct our qualitative and quantitative analysis, we

prepared our dataset usingML projects proposed by Rzig et al. [22],

a subset of the dataset proposed by Gonzalez et al. [10]. Their set

contained 4031 ML projects hosted on GitHub, one of the most

popular platforms for hosting software repositories [27]. Our set

is composed of 508 open-source ML projects extracted from this

set based on the following criteria. They have Python as the main

programming language since it was found to be the most popu-

lar language for ML projects [10], and use Travis CI, which is the

most adopted CI/CD infrastructure in OSS projects [17] and in

ML projects [9]. From these projects, we extracted 15,634 commits

modifying the .travis.yml file. These commits will be used for the

quantitative study to answer RQ3 and RQ4. Then, we filtered those

commits based on two criteria: At least one Python file should be

in the list of modified files and at least one of the modified source

code files should have one of these keywords related to ML in their

name or path: data, model, train, training, test, pipeline, predict,

correctness, deploy, inference, preprocess. Prior works in Machine

Learning [28, 29] have also utilized keyword-based searching.

The reason for this filtering is that we want to study commits

that are impacting both the pipeline andML source code.We ended

upwith 3169 commits, onwhich we applied pure random sampling

with a 95% confidence level and a 0.05margin of error.We obtained

343 commits for manual analysis in RQ1 and RQ2.

3.2 Approach

3.2.1 CI Evolution Analysis

To understand the evolution of CI/CD pipelines, two authors

manually labeled the 343 commits using Zampetti et al.’s [17] tax-

onomy of restructuring actions applied in the pipeline configura-

tion file. Both authors have extensive expertise in DevOps and Soft-

ware engineering. They focused on the second level of the taxon-

omy to simplify the analysis and the comparison with Zampetti

et al.’s results. Inter-rater agreement was measured using Cohen’s

kappa [30] at 0.72, indicating substantial agreement. A reconcilia-

tion meeting was held afterward to resolve the differences.

3.2.2 Co-Evolution Analysis.

Studying the changes in the CI/CD configuration file can give

us an idea of the most occurring actions performed on it. However,

the intent of these changes is not obvious when they are analyzed

individually. To yield deeper insights, we analyze code changes in

both ML source files and .travis.yml file, to better understand how

CI co-evolves with other ML-related components.

Manual co-evolution labeling. Two authors individually la-

beled the changes happening in the sample commits in both ML

source and .travis.yml files. Because there could be many changes

occurring, the labeling was not limited to one category per com-

mit; rather, the raters were free to add as many categories as re-

quired to assess all the changes. Not only did the authors analyze

the code changes happening in files, but they also observed the

commit message and description as well as the Pull Requests (PRs)

discussion of the commit to further evaluate the adjustments made.

The labels were created by following a cooperative card-sorting

procedure [31, 32]. The list of categories defined by both raters

was maintained in a shared file, ensuring consistent naming with-

out introducing substantial bias. Then, the two raters discussed

and resolved conflicts in a consensual agreement meeting. We cal-

culated the Cohen’s kappa [30] score which we found to be 0.65,

showing substantial agreement. In the end, we identified 14 cate-

gories of co-changes in CI/CD pipelines and ML code.

Co-evolutionChangeMining. To further analyze the co-evolution

between CI/CD configuration changes and ML-related changes in

RQ2,we employedAssociationRuleMining (ARM), which describes

relationships between different phenomena. The rules consist of

frequent subsets and take the form of X => Y, where X represents

the antecedent and Y is the consequent. Metrics like "Support" and

"Confidence" are used to measure the quality of these rules [33].

Support(X=>Y) indicates the frequency of appearance of co-occurrence

of X and Y,while Confidence(X=>Y)measures the conditional prob-

ability that Y is present given the presence of X, indicating the re-

liability of the association between X and Y.

(D??(- ⇒ .) = %(- ∩ .) (1)

�>=5 (- ⇒ .) =
%(- ∩.)

%(-)
(2)

To generate Association Rules, we picked theApriori algorithm [34],
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awidely used algorithm for studying co-change and co-evolution [35–

37]. Given a set of transactions, the Apriori algorithm generates as-

sociation rules satisfying user-specifiedminimum support and con-

fidence criteria. It starts by generating large itemsets appearing in

a minimum proportion of transactions using a minimum support

threshold and then uses these itemsets to derive association rules.

In RQ2, we use ARM to assess the relationship between the cate-

gories we labeled manually for co-evolution analysis. We used a

minimum support value of 0.1 to focus on relatively frequent and

potentially more significant associations, and we also used a min-

imum confidence value of 0.6, which was the value used in other

co-evolution works [37, 38].

3.2.3 Change Pa�erns Analysis.

To better understand the changes happening in CI/CD configu-

ration files, we perform a change pattern analysis. We use Abstract

Syntax Trees (AST)s, to represent the code to help mine the re-

occurring changes, which we later cluster and match to generate

insight.

Abstract Syntax Tree Analysis. We are interested in study-

ing the patterns of changes happening in the CI/CD configura-

tions in the context of ML projects. But first, we need to parse the

.travis.yml configuration file and extract the Abstract Syntax Tree

(AST) [39]. ASTs break down code into a tree-like structure, with

nodes representing different language constructs, such as functions,

loops, or variables, and edges denoting the relationships between

them. To accomplish this, we used TraVanalyzer [9], a tool de-

signed to parse Travis CI configuration files and generate the corre-

sponding AST. With it, we parse the CI/CD configuration file in all

the 15,634 commits and then apply AST diffing using the state-of-

the-art GumTree [40] to compute fine-grained changes. GumTree

can detect change types happening in the configuration files by

comparing each node in the AST between two diffs, allowing us

to pinpoint and categorize the structural changes that take place

within the configuration files.

Command Matching and Clustering of CI changes. After

generating the change patterns from all the commits, we now need

to find a way to group them into meaningful clusters in order to

analyze the different properties and stages. However, there is an

abundant use of commands and scripts within the .travis.yml file.

Following Rzig et al.’s [9] approach, we extracted the commands

appearing in the file from each commit and applied a matching

process where we matched AST nodes having the same command

name and omitted the rest of the parameters in the commands

since they are often project-specific and do not add value. We per-

formed a more refined clustering based on parent node name simi-

larity, which consists of a Travis CI keyword [41], and change type

to generate the final list of change patterns. Finally, we apply a

normalization procedure on the node labels to ensure the generaliz-

ability of our results.We identified 59,948 changes in the .travis.yml

file from the dataset of commits. Each change includes the action

performed, the modified command, and the parent Travis CI key-

words where the command was performed.

3.2.4 Developer Expertise Analysis

Finding reliable metrics for measuring developer expertise in

software development is no easy feat, as previously reported [42,

43]. Previous studies have employed diverse approaches, including

skill vectors [44, 45], ML techniques [46, 47], and, notably, Change

History information [48–50]. The latter encompasses metrics such

as commit frequency and the extent of modified lines of code, and

has been proven effective by Anvik et al. [51].

In our study, we aim to investigate the role of developer ex-

pertise in the context of modifying CI/CD configurations for ML

projects.We hypothesize that developers with a deeper knowledge

and prolonged involvement in the project are more inclined to

modifyCI/CD configurations. In our dataset comprising 15,634 com-

mits, we identified 1951 developers as contributorsmodifying pipeline

configurations, with each developer uniquely identified by their

email addresses. To assess expertise, we calculate the percentage

of CI-modifying commits for each developer alongside the percent-

age of their total contributions to the projects. The objective is to

explore how experience, manifested through active and substantial

contributions to a project, influences the likelihood of developers

being involved in CI/CD changes. To quantify and statistically as-

sess the strength of the observed relationships, we calculate the

correlation between these two measures using Spearman’s rank-

order correlation [52] and Kendall’s correlation [53]. Spearman’s

correlation measures the strength and direction of the monotonic

relationship between two variables. Kendall’s correlation quanti-

fies the strength and direction of the ordinal association between

two variables by comparing the number of concordant and discor-

dant pairs of data points.We used the p-valuemeasure to assess the

statistical significance and strength of the observed correlations.

4 Empirical Evaluation

4.1 RQ1: Evolution of CI/CD pipelines

We begin by evaluating the percentage of CI/CD pipeline changing

commits in the 508 ML projects. We find a median of 4.44%, which

is slightly higher than the 2.2% value found by Zampetti et al.’s [17]

when studying general OSS projects.

To further understand how CI/CD pipelines evolve over time, two

authors manually labeled the commits by adopting Zampetti et

al.’s [17] taxonomy as described previously in Section 3.2.1. This

will help us in comparing the results between ML and general OSS

projects, which is visualized in Figure 3.We give a brief description

of each category here, but more details are provided in Zampetti

et al’s [17] study.

Build Policy (61.8%): Actions in this category concern the build

triggering strategy and dependencies’ installation policy.We found

over half of commits related to this category, with many changes

found by the authors to be related to managing the dependency

installation policy. This is a huge difference compared to general

OSS projects as found by Zampetti et al.’s [17]. This disparity un-

derscores the distinctive requirements and complexities associated

withmanaging the build pipeline in ML development, highlighting

the need for specialized attention in this area.

Maintainability (13.7%): Maintainability refers to the ease with

which the CI/CD pipeline can be modified, repaired, and under-

stood. Common actions include improving the readability of code

snippets, renaming jobs and scripts, and simplifying the build ma-

trix. Our analysis revealed a notable disparity in commit activ-

ity related to maintainability between ML projects and general

OSS projects. This is particularly worrisome because ML systems



Empirical Analysis on CI/CD Pipeline Evolution in Machine Learning Projects Conference’17, July 2017, Washington, DC, USA

Bu
ild 
Pol
icy

Ma
int
ain
ab
ilit
y

Inf
ras
tru
ctu
re

Per
for
ma
nce

Se
cur
ity

Da
shb
oa
rd/
No
tifi
cat
ion
s

Bu
ild 
Pro
ces
s O
rga
niz
ati
on

Categories

0%

10%

20%

30%

40%

50%

60%

Pe
rc

en
ta

ge
 o

f C
om

m
its

ML
General OSS (Zampetti et al.)

Figure 3: Distribution of CI/CD change categories.

have a susceptibility to incurring technical debt, as they not only

inherit the typical maintenance challenges associated with tradi-

tional code but also face an additional set ofML-specific issues [54].

Infrastructure (9.32%): This category revolves around changes to

the overall infrastructure supporting the build process. The iden-

tified action involves adopting Containerization to ensure a con-

sistent environment for the build process. The two authors im-

proved on this definition from Zampetti et al.’s [17] taxonomy to

include commits where the whole .travis.yml file was removed and

replaced by a GitHub Actions configuration file. The raters found

a very limited number of commit changes related to Containeriza-

tion. ML projects often involve a diverse set of dependencies and

specialized hardware configurations, making it challenging to en-

capsulate all aspects of the ML environment within Docker con-

tainers effectively.

Performance (8.45%): The objective in this category is to mini-

mize build time by removing unnecessary components from the

build, adopting caching strategies, and introducing parallelization.

These actions align with established practices, including recom-

mendations from Duvall [2]. ML models usually involve extensive

computations, large datasets, and numerous dependencies, thus

requiring special attention to handling these complexities when

configuring CI/CD builds. However, our research revealed that ML

projects did not exhibit performance improvements in CI/CD con-

figurations to the extent anticipated. In fact, general OSS projects

surpassed ML projects in terms of performance updates. This find-

ing suggests that, despite the resource-intensive nature of ML de-

velopment, general OSS projects have been more proactive in im-

plementing optimizations to streamline their CI/CD workflows.

Security (2.33%): This category includes actions with security im-

plications. Examples include securing credentials/tokens in pipeline

configuration and either introducing or removing sudo in com-

mands. We found a low percentage of 2.33% of changes related

to security compared to other categories, which is slightly higher

than that for general OSS projects.

Dashboard/notifications (2.33%): Improving the notificationmech-

anism and enhancing build log readability in CI/CD pipelines are

the main goals for this category. Here, we found a percentage of

2.33% which is lower than the percentage for general OSS projects.

Not properly configuring build output for CI/CD is considered a

bad practice [55]. Thus, ML developers need to improve on this.

Build Process Organization (2.04%): This category focuses on

improving the overall organization of the CI/CD configurations

through reordering the execution of build steps, restructuring in-

stall and script phases, and embracing parameterized builds. Here,

we find the lowest percentage of changes which is 2.04% compared

to other categories. This is considerably lower than that of general

OSS projects.

RQ1 Findings: Unlike general OSS projects, we found that

over half of changes happening in CI/CD configurations are

related to updating the build policy with minor changes to

Performance, Maintainability, and Build Process Organiza-

tion which may lead to technical debt and prolonged builds.

4.2 RQ2: Co-evolution of CI/CD Pipelines and

Machine Learning Source Code

We curated a taxonomy of 14 categories to describe ML CI/CD co-

changes, as explained in Section 3.2.2. The distribution of the dif-

ferent categories amongst the 343 commits is shown in Figure 4.
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Weemployed Association RuleMining to assess the coupling be-

tween these different categories, which is detailed in Section 3.2.2.

We found seven association rules, which we present in Table 1.

Now we investigate the results of our analysis for each of the cat-

egories in the taxonomy.

Table 1: Association rules mined for commit analysis

Rule Antecedents Rule Consequents Support Confidence

Documentation Dependency Management 0.18 0.71

Pipeline Automation Dependency Management 0.11 0.67

Refactoring Dependency Management 0.13 0.61

Feature Development Testing 0.1 0.75

Integration Testing 0.11 0.71

Model Training Testing 0.11 0.66

Pipeline Automation Testing 0.12 0.72
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Testing (21.00%): Testing includes commits related to writing or

updating tests for MLmodels. This is the most significant category,

appearing in 21% of all commits, meaning that approximately one

in every five commits is related to testing. This supports our find-

ings in RQ1 where we identified Build Policy, which includes up-

dating testing policy, as the most changing category in .travis.yml

file. This is due to the fact that in many cases, we found that de-

velopers add the tests manually to the CI/CD configuration. An ex-

ample is illustrated in Listing 2, where a new test was added to the

.travis.yml file for the ray-project/ray repository, which has over

28,000 stars.

1 s c r i p t :
2 . . .
3 − python t e s t / mon i t o r _ t e s t . py
4 − python t e s t / t r i a l _ r u n n e r _ t e s t . py

5 + − python t e s t / t r i a l _ s c h e d u l e r _ t e s t . py

Listing 2: Adding a new test suit in .travis.yml

(ray-project/ray/d06beac).

This is a bad practice because each time a new test is added, the

developers need also to include it in the CI/CD configuration file.

The better approach is to use a testing framework with automatic

discovery, like pytest [56] and nosetests [57], which scans for

testing files and functions, making it easier to maintain and scale

test suites as the project grows.

Dependency Management (20.31%): Commits in this category

involve adding or updating dependencies used in ML or CI com-

ponents. The percentage of commits related to dependency man-

agement is 20.3%, which is also about a fifth of the total commits.

The reason for this is identified by the raters that many projects

manage their dependencies within the .travis.yml file instead of

externalizing them into dedicated files, such as requirements.txt

and pyproject.toml. This leads to frequent changes to the installa-

tion policy in .travis.yml as we discussed in RQ1. For instance, we

found Listing 3 in the piskvorky/gensim repository, a well-known

open-source Python library with over 14,000 stars, where depen-

dencies are added directly in the .travis.yml file.

1 i n s t a l l :
2 . . .
3 − pip i n s t a l l s c i k i t − l e a r n

4 + − pip i n s t a l l t e n s o r f l ow

5 + − pip i n s t a l l k e r a s

Listing 3: Adding new dependencies directly in .travis.yml

(piskvorky/gensim/7e74d15).

Embedding dependencies in CI scripts can make it harder to main-

tain a consistent and reproducible environment.

Documentation (8.73%): This category involves updating project

documentation, including README files, code comments, or API

documentation. The raters found about 9% of commits updating

documentation which is moderate compared to the first two cat-

egories. Also, as shown in Table 1, we find that if there is a doc-

umentation update within a commit, it is likely that there is also

a dependency management change as well with a confidence of

0.71. This change, as observed by the two authors, is to ensure

that the documentation reflects the correct dependencies and their

versions. For instance in the EducationalTestingService/skll reposi-

tory, they changed the tabulate package to prettytable and had

to update both .travis.yml and the README file.

1 # \textit {. travis.yml }

2 - conda install --yes --channel defaults --channel

↪ conda -forge python= $TRAVIS_PYTHON_VERSION numpy

↪ scipy beautifulsoup4 six scikit -learn ==0.20.1

3 - prettytable python -coveralls ruamel.yaml

4 + tabulate python -coveralls ruamel.yaml

5 # README .rst

6 Requirements

7 ...

8 - `PrettyTable <https :// pypi.org/project /PrettyTable />`

9 + `tabulate <https:// pypi.org/ project/ tabulate />`

Listing 4: Changing the ’prettytable’ dependency to ’tabulate’ and

updating documentation (EducationalTestingService/skll/cd5bf73).

Bug Fixing (8.64%): Commits in this category address and resolve

issues or bugs identified in the code. The moderate percentage

might indicate that changing the .travis.yml file and ML source

code is not often related to bug fixing. Here, we observe that the

bug fixes in ML files and CI/CD configurations are independent

and are usually related to fixing syntax errors in .travis.yml.

Refactoring (7.46%): Refactoring focuses on improving the code’s

structure, readability, and maintainability without altering its ex-

ternal behavior.MLdevelopers might remove files, reorganize code,

rename variables, or simplify complex functions to enhance the

overall quality of the codebase. The category appears only in 7.46%

of commits and often leads to dependency updates with a confi-

dence of 0.61. This is mostly due to removing deprecated libraries

and updating Python versions, like in Listing 5 which was taken

from the marl/openl3 repository. In this commit, developers re-

moved Python versions 2.7 and 3.5 and added versions 3.7 and

3.8 since as part of their refactoring process, they changed their

models to use Tensorflow 2 and it only supports Python versions

3.6-3.8.

1 python :

2 +#− " 2 . 7 " # byeeeee f o r e v e r

3 +#− " 3 . 5 " # t ens o r f l ow 2 does not s uppo r t

4 − " 3 . 6 "

5 + − " 3 . 7 "

6 + − " 3 . 8 "

Listing 5: Removing python versions unsupported by Tensorflow 2

(marl/openl3/d593e2d).

Code Cleanup (6.87%): Commits in this category are related to

removing dead code, unused variables, or deprecated functions to

help maintain a clean and efficient codebase. We find a percentage

of 6.87% commits which is moderate compared to other categories.

We show a code snippet reflecting this category from the chain-

er/chainercv repository, where they removed the disk attribute, a

decorator that marks tests consuming a lot of disk space, from the

.travis.yml file as well as source files as shown in Listing 6.

1 # \textit {. travis.yml }

2 - MPLBACKEND ="agg" nosetests -a '!gpu ,!slow ,! disk' tests;

3 + MPLBACKEND ="agg" nosetests -a '!gpu ,! slow' tests;

4 # tests/datasets_tests /ade20k_tests /test_ade20k .py

5 - @attr.disk

6 def test_ade20k_dataset(self):
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Listing 6: Removing the disk test decorator from test files and

.travis.yml (chainer/chainercv/3eff205).

Model Training (6.08%): Model Training commits are related to

training or fine-tuning ML models. Changes to hyperparameters,

datasets, or training algorithms fall under this category. Model

training is essential for optimizing the performance of ML appli-

cations. However, with a percentage of approximately 6%, we re-

alize that changing model behavior is not always correlated with

updating CI/CD configurations. We also found that model training

often requires adding new tests and/or updating older ones with a

confidence of 0.66. An example of that is shown in Listing 7 taken

from the OpenNMT/OpenNMT-py. Here, the developers decided

to use training steps instead of epochs when training the models.

Training steps provide more fine-grained control over the train-

ing process. A change in the testing command was performed in

.travis.yml as well.

1 - python train.py -model_type img -data /tmp/im2text /q

↪ -rnn_size 2 -batch_size 10 -word_vec_size 5

2 - -report_every 5 -rnn_size 10 -epochs 1

3 + -report_every 5 -rnn_size 10 -train_steps 10

Listing 7: Using training steps instead of epochs for model training

(OpenNMT/OpenNMT-py/4d17982).

Pipeline Automation (5.69%): These commits introduce or en-

hance automation scripts or workflows within the CI/CD pipeline.

Automated processes improve efficiency and reliability, enabling

seamless integration, testing, and deployment of machine learning

models. The percentage of 5.69% commits suggests minimal efforts

for using automation scripts within these commits. Furthermore,

We noted that adding automation scripts often coincides with up-

dates in testing components and changing dependencies as shown

in Table 1.

Integration (5.50%): Integration commits signify connections with

other systems or services, aligning with a broader software ecosys-

tem. Integration can include databases, web applications, or noti-

fication systems. We found a percentage of 5.5% commits which

is moderately low compared to other categories. We also found

that these changes are frequently followed by updates in testing

components with a confidence of 0.71 in Table 1. This indicates a

strong correlation between integration efforts and ensuring com-

prehensive testing, possibly to validate the integrated systems. The

raters observed that in most cases, the service is actually Docker

and is used to run integration tests as shown in Listing 8, which

was taken from the X-DataInitiative/tick repository.

1 ma t r i x :
2 i n c l u d e :
3 . . .

4 + s e r v i c e s : docker

5 + env :

6 + − DOCKER_IMAGE= x d a t a i n i t i a t i v e / t i c k _ubun tu : 1 . 3

7 . . .
8 s c r i p t :
9 . . .

10 + − i f [ [ " $TRAVIS_OS_NAME " == " l i n u x " ] ] ; then docker

11 + run −v `pwd ` : / i o " $DOCKER_IMAGE" / i o / t o o l s / t r a v i s /

12 + docker_run . sh ; f i

Listing 8: Integrating Docker to build and run tests

(X-DataInitiative/tick/01a4966).

FeatureDevelopment (4.81%): Feature Development involves the

addition of newML features to the codebase. This could include im-

plementing novel algorithms, data processing techniques, or any

other functionality that enhances the capabilities of the machine

learning models. The low frequency suggests that new features do

not require updates in the CI/CD configurations. However, those

changes are highly associated with testing updates with 0.75 con-

fidence as shown in Table 1.

PerformanceOptimization (2.65%): Commits aiming to optimize

the performance of machine learning models or CI/CD processes

fall into this category. The techniques used are mentioned in RQ1.

1 # \textit {. travis.yml }

2 - conda create -q -n test -environment python =

↪ $TRAVIS_PYTHON_VERSION Cython numpy >=1.14 scipy

↪ tensorflow keras

3 - scikit -learn numba nose

4 + scikit -learn numba joblib >=0.12

5 # tslearn /clustering .py

6 def silhouette_score (X, labels , metric =None , sample_size =

7 - None , metric_params =None , random_state =None ,

8 + None , metric_params =None , n_jobs=None , random_state =

9 + None ,** kwds):

Listing 9: Using the joblib [58] library for parallel computing

(tslearn-team/tslearn/d3062d3).

The raters found a few cases involving using parallelization through

joblib [58], a well-known Python library that provides tools for

parallel computing and efficient caching. Listing 9 is a code snip-

pet taken from the tslearn-team/tslearn repository where the de-

veloper added used the joblib package to perform parallel compu-

tations within their models. They added the dependency to the in-

stallation command in .travis.yml since it is now needed to build

and test the models.

Deployment (1.57%): Deployment commits involve activities re-

lated to deploying machine learning models to production or up-

dating deployment-related code. Surprisingly, we found a small

number of commits that apply deployment changes when modify-

ing the .travis.yml file. ML practitioners seem to prefer more man-

ual and controlled deployment processes, reflecting a risk-averse

attitude toward automated deployment. The limited emphasis on

CD could stem from the unique challenges posed by ML models,

emphasizing the need for precision and careful consideration in

better-tailored deployment processes for ML projects.

Security (0.39%): This category addresses security vulnerabilities

or improves the security aspects of machine learning models, data

handling, or CI/CD processes. With only four commits related to

security, it is obvious that security is not a major concern when

updating both ML source code and pipeline configurations. This

aligns with our finding from earlier in RQ1, where we also identi-

fied only eight commits related to security in .travis.yml.

Model And Data Versioning (0.29%): These commits are related

to data and model versioning and management, ensuring consis-

tency and reproducibility in ML experiments. This category has

the lowest frequency with only 3 commits. Although versioning is
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established as a good practice, ML versioning is still a young prac-

tice as observed by Lewis et al. [59], due to the lack of effective

tools tailored for the complexity of ML models. Traditional code

versioning tools like Github are unsuitable for data versioning due

to large sizes and specialized tools like Data Versioning Control

(DVC) are still not widely adopted in ML projects, as found by Bar-

rak et al. [60]. Two of the commits we found just use Github to spec-

ify datasets with different versions whilst one commit uploads the

model to Amazon Web Services (AWS) [61] storage with their cor-

responding versions as a workaround for the large file sizes. The

commit in Listing 10, from sorgerlab/indra, updates the version of

the folder containing the models in the cloud storage and renames

to reflect the version update from 1.2 to 1.3.

1 - - mkdir -p $HOME /.indra/bio_ontology /1.2

2 + - mkdir -p $HOME /.indra/bio_ontology /1.3

3 - - aws s3 cp s3:// bigmech /travis/mock_ontology .pkl

4 - $HOME/. indra/bio_ontology /1.2/

5 + - aws s3 cp s3:// bigmech /travis/bio_ontology /1.3/

6 + mock_ontology .pkl $HOME /.indra/bio_ontology /1.3/

7 bio_ontology .pkl --no -sign -request

Listing 10: Versioning data in AWS storage

(sorgerlab/indra/6bba5a2).

RQ2 Findings: We devised a taxonomy of 14 co-changes

and identified Testing and Dependency Management as the

most prominent categories. We found two bad practices in

those two categories which are direct inclusion of dependen-

cies and a lack of usage of standardized testing frameworks.

4.3 RQ3: Change Patterns in CI/CD pipelines

To gain a deeper understanding of the evolution of CI/CD configu-

rations, we want to identify the change patterns occurring within

build environment settings and the different job phases. To achieve

that, we perform AST analysis on .travis.yml configuration files

and then apply clustering and matching to obtain a list of change

patterns, as explained in Section 3.2.3. The results of this proce-

dure are shown in Figure 5 where we present each phase and its

frequency as well as the top five change patterns within each one.

Build Environment Configurations: As shown in Figure 5, we

identified the top eight build environment configurations and the

frequency of their changes. For some of them, we also specified

the top three change patterns. Setting environment variables via

the env key is the most changed configuration with 5,183 occur-

rences. By adjusting environment variables, developers can easily

specify and control the test environment. Furthermore, it provides

flexibility for testing since ML projects often involve diverse frame-

works, data sources, or experimental conditions. The next most

changed setting is related to updating Python versions. Developers

may want to ensure their projects are tested across various Python

environments to guarantee broad compatibility.

We also found 960 updates to the sudo key which is moderately

low compared to other patterns. This aligns with our results in

RQ1 and RQ2 where we found that security is not a big concern

for ML developers. However, we found that the sudo key is actu-

ally deprecated according to Travis CI documentation [41]. It is a

Figure 5: Change Patterns in .travis.yml configurations lifecycle.

bad practice in software engineering to use deprecated code. Ad-

ditionally, we identified 661 changes related to caching, which is

also moderately low compared to other keys. As explained in RQ1

and RQ2, performance-related changes are minimal in .travis.yml

file within ML projects.

The language key has been updated 920 times in our dataset,

and most changes are related to adding or updating the Python

language or using a generic language. The generic language means

that the build environment should not assume a specific program-

ming language and should provide a generic environment where

developers can specify their own build commands. However, since

the projects we are working with are all written in Python, we find

this behavior unsettling. Using "python" as the language key pro-

vides a more standardized and optimized environment. The os and

dist keys were modifiedmoderatelywith linux and osx being the

most changed operating systems.

As for distribution,most changes are related to adding either the

trusty distribution or the xenial one. Both represent a version

of the Ubuntu operating system with specific features and package

versions.

Finally, we found minimal changes related to integration with

services, a detail we also observed in RQ2. Similarly to our find-

ings in RQ2, most changes are related to adding docker. However,

as observed in RQ1, there are minimal changes related to Con-

tainerization due to the difficulty of encapsulating the complex

aspects of the ML environment within Docker containers. Other

added services include xvfb, a service that provides a virtual dis-

play server for running graphical applications, and PostgreSQL, a

pre-configured environment that provides a running instance of

the PostgreSQL database server for testing. The usage of the xvfb

service in CI/CD configuration within ML projects appears some-

what unconventional due to the non-graphical nature of many ML

tasks.

Job Phases: We observe that the install phase has undergone

the most changes with a frequency of 13,177. The top five change
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patterns we found are related to Pip and Conda which are consid-

ered the most popular package managers [62]. Additionally, the

before_install phase is the third most changed phase as well

which is often used for pre-setup tasks before the main installation

phase. This supports the results we found in RQ1 and RQ2, where

we identified updating dependencies as the second most frequent

category of change happening in CI/CD changing commits as well

as updating installation build policy as the most occurring action

in .travis.yml file.

The script phase is the second most frequently changed. This

phase typically includes commands for running tests, as shown in

the change patterns in Figure 5. The high number of changes indi-

cates a significant amount of activity related to test scripts, which

we observed in RQ2. Pytest [56] and nosetests [57] are pop-

ular testing frameworks for Python but surprisingly, the python

command is changed more frequently, potentially indicating a ten-

dency to run tests independently using the python command rather

than utilizing standard testing frameworks, a bad practice that we

also noted in RQ2. As for the "before_script", it is also frequently

changed. Surprisingly, we found that the pip command is changed

constantly here. In Travis CI configurations, it’s more common

and considered best practice to use the install phase for installing

dependencies. We also found the flake8 command, often used to

perform linting and static code analysis, and the export command

which sets environment variables. Updating these commands aligns

with the idea of performing necessary setup and checks before the

main build or testing phases commence which is the intent of the

before_script phase.

The discrepancy between the frequency of changes in the after

_success and after_failure phases may be attributed to the

distinct nature of these phases within the CI/CD pipeline. after

_success typically includes actions performedwhen the build and

tests have passed successfully, indicating a stable state, whereas

after_failure is executed in the event of test failures or build er-

rors. Changes in after_success are mostly related to adding the

coveralls and codecov commands, which report code coverage

metrics to external services after a successful build. The after_failure

less frequent usage can indicate that ML developers often resort

to manual intervention or debugging outside the CI/CD pipeline

when errors occur, thereby reducing the need for frequent adjust-

ments.

Furthermore, we note that deployment-related phases, which

are before_deploy, deploy and after_deploy have low frequen-

cies compared to other phases which suggests a cautious approach

to automated deployment in the ML community. We found similar

results in RQ2 as well with Deployment being one of the least fre-

quent categories of changes. The most commonly added provider

is PyPI, followed by a few others such as GitHubPages and releases,

as well as custom script-based deployment strategies.

RQ3 Findings: We generated a comprehensive list of

change patterns. analyzing those supports our findings in

RQ1 and RQ2. We observe two more bad practices when up-

dating CI/CD configurations which are the usage of depre-

cated Travis CI settings and the reliance on a generic build

language.

4.4 RQ4: Developer Expertise for CI/CD

Configuration Changes

Developer expertise has been a well-explored area in the context

of recommendation systems, with substantial research highlight-

ing its significance [48, 49, 63]. However, it’s worth noting that, to

the best of our knowledge, there is a noticeable gap in research con-

cerning developer expertise in the domain of CI/CD pipelines for

ML projects. As explained in Section 4.4, we used change history,

and specifically the frequency of commits, as a metric to evaluate

the experience level needed to conduct changes in CI/CD config-

urations. We calculate the correlation between the percentage of
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Figure 6: Ranks of percentage of commits per author (Spearman’s)

CI-modifying commits for each developer and the percentage of

their overall contributions to the projects using Spearman’s corre-

lation [52] and Kendall’s correlation [53]. We observed a Spear-

man’s correlation value of 0.86. The associated p-value was ex-

tremely small (p < 0.001), indicating strong evidence against the

null hypothesis of no correlation. This significant correlation is vi-

sually represented in Figure 6 using a scatter plot of the ranked

values. We also found Kendall’s correlation value of 0.68 with an

extremely low p-value (p < 0.001). These results show that the de-

velopers responsible formodifying the CI/CD configurationfile are

likely to be the ones contributing the most to the ML projects, and

thus should have the most expertise in those projects.

RQ4Findings: Developers with deeper knowledge and pro-

longed involvement in the project are more inclined to mod-

ify CI/CD configurations.
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5 Threats to Validity

Construct validity. The manual analysis of RQ1 and RQ2 might

be insufficient to evaluate the exact changes happening in the com-

mit. Since there is no existing taxonomy to use as a reference, the

two authors independently reviewed and categorized the changes

in the sample commits. The categorization process took into ac-

count various sources, including code diffs, commit messages, com-

mit descriptions, and pull request discussions. Then, the authors

held a meeting to discuss the conflicts and reach a consensus. Ad-

ditionally, for assessing developer expertise in RQ4,where no exact

mean ofmeasurement exists, we leveraged change history informa-

tion, a reliable metric well-documented in the literature [48–51].

Internal validity.We acknowledge the potential for selection bias

in our sample dataset, which may not fully represent all changes

in CI/CD commits. We reduce this threat by using random sam-

pling with a 95% confidence level and a 0.05 margin of error when

creating our dataset. Furthermore, The observed coupling between

commit categories can be due to noise. To mitigate this threat, min-

imum support and minimum confidence thresholds were applied.

External validity.Our study focused on open-source ML projects

using Python as their primary programming language, which is the

most popular language for ML projects [10]. We acknowledge the

limitation of generalizing our findings to closed-source projects

and those developed in different programming languages. To ad-

dress this limitation, our datasetwas diverse, encompassing projects

of varying sizes, ages, and commit frequencies. Furthermore, we

only studied projects that have Travis CI as their CI/CD infrastruc-

ture, which is considered themost usedCI/CD tool for open-source

ML projects [9].

6 Related Works

6.1 CI/CD Bad Practices and Barriers

The challenges of adopting CI/CD pipelines have been highlighted

by many authors. Duvall et al. [2] first identified several common

barriers related to using CI/CDpipelines such asmaintenance, man-

aging dependencies, and handling different environments. He then

curated a catalog of 50 patterns and anti-patterns regarding several

phases in the CI process [64]. Zampetti et al. [55] also defined a

catalog of 79 bad smells encountered by developers, leveraging in-

terviews with experts and analyzing Stack Overflow posts. Hilton

et al. [65] studied the challenges faced by developers when mov-

ing to CI, which involve multiple aspects such as quality assurance,

security, and flexibility. Similarly, Olsson et al. [66] examined the

barriers of migration towards CD. Our work is focused more on

analyzing the co-changes occurring in CI/CD and ML code.

6.2 CI/CD in Machine Learning Projects

There is limited literature studying CI/CDusage withinMLprojects.

Some works [14, 67] found the traditional testing practices in exist-

ing CI services to be insufficient when it comes to ML applications

and proposed new CI systems more tailored to the specifications

of ML testing specifications. Rzig et al. [9] was one of the first re-

searchers to empirically study and characterize CI adoption rate,

performed tasks, and build failures in ML projects compared to

general OSS projects. However, his work mainly focused on ana-

lyzing CI adoption without delving deeper into the changes occur-

ring in CI/CD configuration and the developer expertise needed to

perform those modifications.

6.3 Software Evolution

Many papers have studied the evolution of software artifacts.McIn-

tosh et al. [68] empirically studied the evolution of build systems in

open-source projects and found that build files have a high churn

rate and are tightly coupled with source code and test files, which

means that they need constant maintenance as the source files

and test files changes. They also studied the developer efforts and

found that 79% of source code developers also change build files.

Jiang et al. [69] explored the co-evolution of Infrastructure-as-Code

(IaC) files and found IaC files to be tightly coupled with other

software artifacts. Barrak et al. [60] focused on the co-evolution

of Data Versioning Control (DVC) files and ML source files, and

found a tight coupling between DVC and software artifacts and a

non-constant complexity trend for DVC files in 78% projects. Zam-

petti et al. [17] studied the evolution of CI/CD pipelines by eval-

uating the restructuring actions occurring in the CI/CD changes.

The 34 restructuring actions are organized in a three-level taxon-

omy and helped in extracting 16 metrics describing how pipelines

evolve over time. Unlike Zampetti et al. [17], we want to under-

stand the co-evolution between changes happening in the CI/CD

pipeline configuration and the ones happening in ML source code.

We also analyzed the developer expertise needed to perform those

changes.

7 Implications

For ML Developers: The study’s findings underscore the critical

importance of managing dependencies and testing procedures in

ML projects, as these areas experience frequent changes and often

need adjustments in build policies. ML developers need to pay ex-

tra care in these areas and try to avoid bad practices like managing

dependencies directly in CI/CD configuration and not using stan-

dardized testing frameworks. These practices can lead to CI/CD

maintenance overhead and bugs. Furthermore, as ML projects tend

to use large datasets and complex computations, ML developers

need to utilize caching mechanisms and job parallelization to en-

hance the performance of the CI build.

ForMLTool Builders:The studyhighlights a significant opportu-

nity for tool developers to streamline the CI/CD process for ML de-

velopers. The limited adoption of continuous deployment among

ML developers when updating CI/CD presents a valuable opportu-

nity for tool builders to develop and provide solutions tailored to

the specific needs and challenges of the machine learning develop-

ment workflow. Furthermore, building upon our identified change

patterns in RQ3, there is an opportunity for CI tools to become

more tailored to ML projects. This could involve enhanced docu-

mentation features to assist in the creation of CI configuration files

tailored to the specific needs of ML development. Additionally, in-

corporating prompts with commonly used commands could facili-

tate the onboarding of less experienced developers, thusmitigating

the perception that only experts can effectively modify CI/CD files,

as observed in our earlier findings. Our dataset of change patterns

from RQ3 can also be used for improving static analysis tools.
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For Researchers: Our findings reveal a prevalence of bad prac-

tices among ML developers in CI/CD processes, presenting an op-

portunity for researchers to delve into this domain. Researchers

can leverage the existing list of change patterns to conduct in-

depth investigations into code smells and bad practices within ML

projects. This approach allows for the development of tailored guide-

lines and best practices aimed at improving the overall quality and

efficiency of CI/CD workflows within the machine learning devel-

opment ecosystem.

8 Conclusion

In this paper,we presented the first empirical analysis of howCI/CD

configuration changes and co-evolves with ML code during the life

cycle of ML projects. Moreover, we performed CI/CD change pat-

tern analysis and evaluated the expertise of ML developers who

manage CI/CD configurations. Our analysis found that over half

of commits include updates to the build policy and minor changes

related to performance and maintainability compared to general

open-source projects. We also revealed several bad practices per-

formed by ML developers which include managing dependencies

directly in CI/CD files, using deprecated code, and not utilizing

standardized testing frameworks. Moreover, the pattern analysis

identified common integration and delivery features widely used

in different CI/CD execution phases. At the same time, our devel-

oper expertise for CI/CD maintenance identified that the pipeline

is mostlymanaged by experienced developers, which indicates lim-

ited knowledge of CI/CD among the ML development community.

We hope that our findings onCI/CD change analysis onMLprojects

will allow future researchers to develop techniques for automatic

incorporation and synchronization of the CI/CD pipeline for ML

projects.
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